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Abstract: Based on the results of [6], [7] and [9], in this paper we present a calculus 
algorithm for the study of the compressible fluid’s stationary movement through profile 
grids, on an axial–symmetric flow–surface, in variable thickness of stratum. Using the D. 
Pompeiu integral-formula for the complex velocity in a multiply connected domain, the 
fundamental relation for the complex velocity and complex potential are obtained. The 
solving possibility of this problem by CVBEM method, using the established fundamental 
equations is also given [9]. We show the applicability of the boundary element methods 
(BEM) with real values, and the possibility of solving the integral equation of the velocity 
potential by using the successive approximation method w.r.t. the parameters ς  (fluid’s 
density) and h (thickness variation of fluid stratum), and using the Lagrangian 
interpolation formula through five points for the calculation of the derivatives of the 
velocity potential. 
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1 Introduction 

During the last years, the Boundary Element Method (BEM) proved to be a very 
efficient method for solving many boundary value problems appeared in 
engineering sciences. In most of the implied problems in engineering analysis, the 
real domain of the boundary value problems has irregular boundaries, with 
complex properties from one zone to the other of the domain, which are excluding 
any possibility to find analytical solutions for the fundamental equations. In this 
case, the modern numerical methods represent the only way to obtain the suitable 
solutions. They were used with a division of the complex domain by a grid, such 
as the method of finite elements (MFE), or by the division of the domain in finite 
elements, which will be then assembled. 
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BEM is an alternative of numerical study, where only the boundary of the 
analyzed domain is devised in finite elements thus obtaining fewer elements that 
in BEM. 

The main point of the real-BEM [1], is the determination of the fundamental 
integral equation of the solution in a domain, with the aid of the values of the 
solutions on the boundary and of the ‘flux values’. By aid of this formula the 
integral equation on the boundary domain is written, and by discretization of the 
integral equation on boundary, the algebraically equation system which result in 
the discretized solution a boundary is obtained. The solution in the inner points of 
the domain is obtained by using once more the fundamental integral equation. 
Depending on the physical nature of the mathematical solution (velocity, potential, 
stream function, etc.) there are three variants of the method: direct-BEM, indirect-
BEM and semidirect-BEM, [1]. 

Lately, using the real-BEM ideas, Hromodka II T.V, [4], has presented a variant of 
the BEM-method in complex variables (CVBEM). This method is specialized for 
the solving of the boundary value problem for the bidimensional Laplace equation. 

After that, D. Homentcovschi, [13], showed the possibility of applying the 
CVBEM in some boundary value problems of the Poisson equation. 

In all these cases, the main request is that the wanted solution should be an 
analytical complex function. 

In the study of the compressible fluid movement by profile grids using the integral 
equation method, the complex potential is a p-analytical function, which does not 
allow the use of the Cauchy integral formula for analytical functions, [8], [9]. 

In the present paper some developments of BEM and CVBEM for this actual 
problem of hydrodynamics are presented, establishing the fundamental equations 
and obtaining the solution of the integral equations by real-BEM using the 
iteration method related to the fluid density. Resembling solutions for the problem 
are found in [2], but with an essentially different numerical method. 

In this paper we present practical aspects of the usage of the calculus algorithm for 
the study of the compressible fluid’s stationary movement through profile grids, 
on an axial–symmetric flow–surface, in variable thickness of stratum. More 
precisely, we show the applicability of the boundary element methods (BEM) with 
real values, and the possibility of solving the integral equation of the velocity 
potential by using the successive approximation method w.r.t. the parameters ς  
(fluid’s density) and h (thickness variation of fluid stratum), and using the 
Lagrangian interpolation formula through five points for the calculation of the 
derivatives of the velocity potential. 

The rest of the paper is organized as follows: in Section 2 we state the problem 
and some theoretical considerations that are needed. In Section 3 we present the 
calculus algorithm for the study of the compressible fluid’s stationary movement, 
together with its practical aspects. 
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2 Presenting the Problem 

The fundamental equations (from the CVBEM method) in the problem of the 
compressible fluid’s movement on a axial-symmetric flow–surface, in variable 
thickness of stratum, could be, [5], [6], [7]: 
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Vm  - asymptotic mean velocity; 

• A – is a fixed point on the base profile L0; 

• t – is the grid step; 

• Г – is the circulation around L0. 
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where: 

• ς – is the fluid’s density, 

• h – is a function that represents the thickness’ variation of the fluid 
stratum. 

• −
∗0D _ – bounded simple convex domain, defined as: 
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where l  is the projection of L0 profile’s frame on the Oy axis. 
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Our purpose is to solve the fundamental equations (1) (obtained from the CVBEM 
method) using BEM in real variables. For doing so, we consider the fundamental 
integral–equation of the complex potential F(z) = φ' + iψ  and transform it into an 
integral equation with real variables, i.e. we build the integral equation of the  
velocity potential φ'(s) (ψ (s) is the flow rate function). 

Theorem 2.1 [7], [11]. In the subsonic motion of the compressible fluid through 
the profile grid, on an axial–symmetric flow–surface, in variable thickness of 
stratum, the velocity potential ( ) 0L  s,s ∈ϕ  is the solution of the integral equation 
(4): 
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where: 

( )00 y,xs  and ( )ηξσ , are the curvilinear coordinates of the fixed point A on the L0 
base profile; 
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Vmx, Vmy are the components of the asymptotic mean velocity Vm. 

Proposition 2.1 [10], [11]. In the case of an axial-subsonic movement of a perfect 
and compressible fluid through profile grids, the flow rate function is determined 
from the boundary condition (6): 
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where: 

• ω is the angular rotation velocity of the profile grid; 

• R0 defines the origin of the axis system related to the turbine’s axis. 

Equation (4) is an integro–differential equation. In this section, we will show a 
possibility of solving this equation applying the method of successive 
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approximation (the iteration method), using also the result from [8] about the 
order of the term containing the double integral expression: 
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Proposition 2.2 [10], [9]. In the case of the subsonic movement of the 
compressible fluid through the profile grid on an axial–symmetric flow–surface, in 
variable thickness of stratum, the integral equation of the velocity potential 
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where: 

• γ  is the adiabatic constant; 

• c0 is the sound velocity in the zero velocity point; 

• vτ and vn are, respectively, the tangential and normal velocities on L0. 

In the first approximation it is assumed that 0ςς = = constant and ( )0∗∗ = pp = 

constant. Thus, from (2), it results that ( )( ) 00 =σq . Hence, in the integral 
equation (4) the double integral (7) is neglected and results the following 
Fredholme integral equation of second type, with continuous nucleus: 
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From solving equation (9) we obtain ( )sIϕ and furthermore from (6), (8), (12) 
II ,ςψ  are obtained. Finally, using the relation: 
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ς
ς

0
 (10) 

a Ip∗ and ( )σIq are determined. In the second iteration Ipp ∗∗ = is assumed 

and for the determination of ( )sIIϕ the following Fredholme integral equation of 
second type, with continuous nucleus, will be solved: 
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where a Iψ and ( )sb II  are previously calculated from (6) and (5), respectively. 

From solving equation (11), we obtain IIϕ . Furthermore, from (6), (8), (12) and 

(10) ,IIIIII p, ∗ςψ  and ( )σIIq  are obtained, respectively. Next, the third 

approximation might be done by assuming IIpp =∗ , and so on. 

Proposition 2.3 [10]. Having given the values of the velocity potential on each 
element of the L0 profile’s division, the tangential velocity τv  may be calculated 
in each division element of the L0 basic profile’s boundary by the formula, given 
by the Lagrange interpolation method through five points: 
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where n denotes the number of division elements and by is  we refer to the thi  
element of the division of L0. 

To ensure the practical functionality of proposition 2.2, i.e. to indicate the solving 
method of the Fredholme integral equation of second type obtained in each 
approximation step (equation (6), (11) ), let us reformulate and prove two more 
propositions. 

Proposition 2.4 [10], [11]. In the first approximation step, solving the velocity 
potential’s Fredholme integral equation of second type is reduced to the solving of 
four systems of linear algebraic equations. 

Proof. Using the superposition rule of potential streams, we seek the solution of 
the Fredholme integral equation of second type (9) to be of the form: 
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where: 

I
kϕ , k = 1 ÷ 4 are the solutions of the system (14) of integral equations: 
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The integral equations (14) could be solved using the Bogoliubov-Krilov method, 
conform to which, solving each integral equation reduces to solving a system of 
linear algebraic equations. 

Conform to the method, using an arbitrary division, we partition the boundary of 
L0 in n subintervals σΔΔ =s . Note, that the chosen division might be not 
uniform, for instance at the trailing or the leading edge, where the variation of the 
function I

kϕ  k is stronger from point–to–point, the length of subintervals might be 

shorter. In each subinterval, the function I
kϕ  is assumed to be constant and equal 

to I
kjϕ  where j represents the number of the middle–points of the considered 

subintervals. If the first division–points are debited by even numbers, and the 
division–points of the middle of the subintervals by odd numbers, then, conform 
to the approximation method, the integral equations (14) can be approximated by 
the following systems of linear algebraic equations: 
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Solving the algebraic system (16), we obtain I
kiϕ  in n distinct point from the 

boundary of L0. Finally, from equations (13), I
iϕ  is determined in each point of 

the boundary’s division. 

Proposition 2.5 [10], [11]. In the second approximation step, the Fredholme 
integral equation (11) of the velocity potential is reduced to solving four systems 
of linear algebraic equations. 

Proof. From (8) and (10), a Iς  and ( )sq I  is determined, respectively. 
Consequently, using the superposition rule of potential streams, we seek the 
solution of the Fredholme integral equation of second type (11) to be of the form: 
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where: 
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Using the numeric method presented in proposition 2.4, by applying the 
Bogoliubov-Krilov method, solution (19) is reduced to solving systems of linear 
algebraic equations. 

These systems of linear algebraic equations will have the form: 
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where II
i

II
i

II
i b,b,b 321  and II

ib4  are obtained by using the Simpson formula for 
handling the double integral. 

Solving the algebraic system (21), we obtain II
kjϕ  kj in n distinct point from the 

boundary of L0. Finally, from equations (18), ( )niII
i ,1=ϕ  is determined in each 

point of the boundary’s division. 

3 The Calculus Algorithm of the Fluid’s Velocity 
Potentials through Profile Grids 

1 Given are: the entering values into the profile grids of 111 α ,v ,p ∞  and the 

asymptotic mean velocity mV ; the installation angleλ ; the number of profiles 
n; the density 0ς and the sound velocity c0 corresponding to the null–velocity 

point. The functions ( )σh and ( )σ
0R

R  are given by their table of values; 

2 Conform to the chosen division, the coordinates ( ) 12531 −= n,...,,,i,, iii ηξσ  
are determined. The circulation Γ  is determined from the Jukovschi-
Ciaplighin condition [10], [11]; 

3 From equation (5), the values of 12531 +=⎟
⎠
⎞

⎜
⎝
⎛ n,...,,,j,i,

d
dN,M

j,i
j,i σ

Δ  are 

calculated; 

4 Using the trapezoid method, I
iψ  is calculated from the integral equation (6), 

and, using (17), ( )41÷=kb I
ki  re determined; 

5 The linear algebraic system (16) is solved, and, thus, I
kiϕ  is obtained. 

Furthermore, from (13), I
iϕ  is also obtained; 

6 Using the Lagrange interpolation formula through five points (12), I
ivτ  is 

calculated. Next, from (8), I
iv  is determined, and, furthermore, I

iς  is also 
obtained; 
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7 Using I
iς  and h = const, from the integral (20), by the trapezoid method, a 

( )σψ II
i  is determined. Using equations (19) and (20), ( )41÷=kb II

ki are 
obtained; 

8 The integral equations (19) are solved, transforming them first into a linear 
algebraic system. Furthermore, II

kiϕ  is obtained, and, from (18), II
iϕ  is 

determined; 

9 Using the Lagrange interpolation formula through five points (12), II
ivτ  is 

calculated. Next, from (8), II
iv  is determined, and, furthermore, II

iς is also 

obtained. Furthermore, using II
iς , the next iteration II

ii ςς =  can be 
calculated, h = variable, and the algorithm continues. 

Conclusions 

We have shown some practical aspects of the usage of the calculus algorithm for 
the study of the compressible fluid’s stationary movement through profile grids, 
on an axial–symmetric flow–surface, in variable thickness of stratum, namely: 

• the usage of the boundary element method with real values; 

• the applicability of the successive approximation method w.r.t. the 
parameters ς  (fluid’s density) and h (thickness variation of fluid stratum) 
for solving the integral equation of the velocity potential; 

• the usage of the Lagrangian interpolation formula through five points for 
calculating the derivatives of the velocity potential. 
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