
Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 307

Heuristical Coding of String Transformations

Tibor Répási, László Kovács
Department of Information Technology, University of Miskolc, Hungary
{repasi,kovacs}@iit.uni-miskolc.hu

Abstract: As a part of a study on statistical grammar learning, the word inflection is
investigated in this article. The word inflection is used to create different grammatical
instances of the word. In this paper, the different coding alternatives to describe the strings
and the string transformations are investigated. The proposed methods are tested on a
natural language, the Hungarian language.

Keywords: string transformation, word inflection

1 Problem Statement

The scope of our study is to build a statistical method to learn the rules of word
inflection. The pre-requirement regarding the language is that the language uses
words which are sequences of characters. In our language model, the words are
built up from characters. During the inflection, a word is mapped to a word (a
different word or the same word). The initial word is called stem. The grammar
rule describes the generation of the inflected form from the stem.

It can be assumed that the transformation rules depend on the stem form of the
concepts. There are distinct and relative few rules in the languages, i.e. the number
of rules is much more less than the number of stems. In our approach, the rule
assignment task is considered as a classification method, each stem is assigned to
a rule class. We understand a rule class as a set of independent string
transformations describing a particular grammar rule. In our training set we use to
extract the rule class used to build the objective of nouns.

This paper focuses on the extraction and description of string transformations
representing word inflections.

1.1 Requirements

One of the main requirements on the method is the efficiency. As the set of words
W can be very large, the learning algorithm should have a polynomial cost

T. Répási et al.
Heuristical Coding of String Transformations

 308

function of low grade. One of the key factors in efficiency is the selection of
appropriate word and rule representation form. The main requirements on the
representation form can be summarized in the followings:

- efficient management,

- generalization feature,

- position independently representation,

- compact description,

- flexibility.

2 Analysis of Base Methods

Regarding the string representation forms, the formula should represent a group of
arbitrary strings. The intuitive way of group representation is to describe the
common characteristics of the member strings. As different substrings may be
common in the member strings, the representation should include all of the
substrings. One of the key factors is whether the representation can preserve the
ordering relation or not. If the ordering is not given, the representation form leads
to over-generalization. On the other hand, if ordering is given, the generalized
form should be described with a graph, that makes the execution more costly.

Another approach is the application of regular expressions. Regular expressions
are meant to do pattern matching. An expression describes a rule of how to
construct a string. Consisting of a sequence of atoms, each one describing a string
feature, the atoms can be printable characters, which are substituted by
themselves, and expressions metacharacters. These metacharacter expressions can
describe generalized character substitutions, grouping of expressions, multiplicity
of the preceding atom or logical relationships between atoms. Although the
regular expression is powerful enough to describe general string patterns, the
generalization of different regular expressions is not an unambiguous task. The
resulted expressions tend to be over-generalized.

Considering the string transformation, the main solution found in the literature is
the usage of edit transformation steps. The formalism using edit transformation
uses three basic operation steps:

- replacement of a character with another,

- insertion of a new character,

- deletion of an existing character.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 309

The chain of transformation steps for a (w,w’) pair is calculated with a dynamic
programming method. The main drawbacks of the algorithm has a relative high
O(m2) cost value. The other major drawback is the missing generalization feature.
The transformation chain is based on rigid positions of the characters.

2.1 Additional Assumptions

To create the most suitable description of string transformations we use two well
known assumptions of the target language:

a) the language is a suffixing language, which means that word inflections
are built by adding suffixes to the stem, while the stem stays mainly
unchanged,

b) the only kind of changes to the stem are targeted on the last vowal which
can be prolonged, trimmed or dropped.

3 Subset-based Representation

A character is the atomic structure of the language. The alphabet A = {a} is the set
of characters in the language. There is a special separator character in the alphabet
denoted with ε. A base word is a sequence of characters: w = a*, where a ∈ A.
The * symbol denotes the Klee-star operator (closure on the concatenation). The
set of words is denoted by W. The ε symbol can occur only at the first and the last
positions of the world.

The n-gram denotes a word of length n. The sub-word relation (≤) is defined as a
subsequence:

 w,v ∈ W, w ≤ v : ∃ i, ∀ j: wj = vi+j

In order to describe the common parts of words, a new concept, the generalized
word is introduced. A generalized word means here a set of words. The
consideration behind this concept is the following. Each normal word can be taken
as the set of its sub-words. Thus the common part of two words is equal to the
intersection of these sets. In order to describe the set in a compact form, the
concept of generator word is introduced. A word is a generator in a set if all of its
sub-words are contained in the set. The compact form of the set is given with the
set of the generator words. So, the generalized form of a normal word can be
given with the word itself, as it is the generator of the corresponding set. The main
benefit of this generalization concept is that it enables to build a lattice of
generalized words and thus also the classification methods based on the concept-
lattice can be applied to solve the grammar induction problem.

T. Répási et al.
Heuristical Coding of String Transformations

 310

A generalized word w+ is defined as a set of extended words:

 w+ = {(w,υ)}

where w denotes a word and υ is position descriptor. In our approach the position
descriptor is a multi-valued attribute. The υ is usually a set of linguistic variables
like front, end, near end, middle or middle-end. These variables describe the
approximated position of the substrings. The set of generalized words is denoted
by W+. A generator word of w+ is a word, whose all sub-words are contained in the
set of w+. The set of generators related to a w+ is denoted by g(w+).

 g(w+) = { w | w ∈ w+, ∀ w' ≤ w : w' ∈ w+, ! ∃ w'' ∈w+ : w ≤ w'' }

In the case of generalized word, the position description of an element in g(w+) is
equal to the union of the contained position descriptors of the member words. If
the minimal length of words in a generalized word is constrained by n, an n-level
generalized word is defined:

 ∀ w ∈ w+ : |w| ≥ n

Based on the subset relationship, an ordering can be introduced on the set of
generalized words. For any w1

+,w2
+ ∈ W+ words, the ≤ relation is defined as

 w1
+ ≤ w2

+ : ∀ w ∈ w2
+ ⇒ w ∈ w1

+

If w1
+ ≤ w2

+ is met, then the word w2
+ is called a generalization of the word w1

+.

The intersection of the generalized words can be computed as the intersection of
the sets w1

+ and w2
+. It results in a generalized word. This word is the lowest

common generalization of the two words.

The proposed word model provided a good theoretical foundation to manage the
generalization of words using Formal Concept Analysis methodology.

4 RE-based Representation

Regular expressions are well known and widely used, due to their flexibility leads
to taking over the concept of metacharacter expressions for describing higher level
operations. Unfortunately, regular expressions are not suitable for any kind of
transformation of strings.

As the basic string edition operations are too fine-grained and not general enough
in editing only the necessary part of the word. On the other hand these operations
are not specialized on assumption b), since they simply not aware of vowals at all,
neighter of short and long vowal pairs.

Both, regular expressions and string edition is used to parse a string in the left-to-
right order. According to assumption a) the changing part of the word – suffix – is

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 311

at the end, while the constant part – the stem – is at the beginning, the proposed
coding should use the right-to-left order in parsing the words.

Let a transformation rule T, be a sequence of atoms. Atoms are parsed one-by-one,
but there are 3 types of atoms which has to follow in the order of types:

• extensions: described by printable characters, symbolizing characters
which has to be suffixed to the stem,

• modifications: describes a character transformation to be done on the
current character of the stem:

 apostrophe ('): the vowal has to be prolonged,

 headmark (^): the vowal has to be trimmed,

 dot (.) : the character is copied unchanged,

 tilde (~): the character is dropped.

• copy: the asterisk (*), which appears at the end of the transformation
signs that the remaining part of the stem has to be copied without any
change.

4.1 Examples

As example we use the three nouns “alma”, “szamár” and “selyem”, the subjective
forms of which are in order “almát”, “szamarat” and “selymet”. The
transformation code for the first word is “t'*” (t, apostrophe, asterisk), that means
we take the stem “alma” and suffix it with a “t”, than we modify the last character
to a prolonged vowal, finally copy the remaining part of the stem unchanged. In
the case of the second word the transformation is “ta.^*”, that is we suffix the
stam with “t” first, than with “a”, so the ending will be “at”. Than we copy the last
character of the stam, and trim the next one, finally simply copy the remaining
part. The resulting “szamarat” is the subjective form of “szamár”. For the third
example the transformation is “te.~*”, which suffixes the stem with “t” than with
“e”, the last character remains unchanged, the next is dropped, remaining part is
copied. The result is “selymet”.

4.2 Testing

As a testrun we created the transformations for ~4500 hungrian nouns which were
prepared and added the subjective form for each. Within the testrun each pair was
scanned to create the transformation, then the transformation has been done on the
stem, to test if the original and the transformed word are equal. This procedure
was done on an ordinary PC in about 20 seconds.

T. Répási et al.
Heuristical Coding of String Transformations

 312

References

[1] Satta G., Henderson, John C. “String Transformation Learning”
Proceedings of the Eighth Conference on European Chapter of the
Association for Computational Linguistics, 1997

[2] Crochemore M., Rytter W. “Text Algorithms”, Oxford University Press,
1994

[3] Jeffrey E. F. Friedl “Mastering Regular Expressions”, O'Reilly, 1997

[4] Levenshtein V. I. “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals”, Russion Problemy Peredache Informatsii, 1965

[5] Manning C., Schütze H.: Foundations of Statistical Natural Language
Processing, MIT Press, 1999

[6] Jurafsky D., Martin J. H.: An Introduction to Speech Recognition,
Computational Linguistics and Natural Language Processing, 2006

[7] Krenn, B., Samuelsson C.: The Linguistic's Guide to Statistics, 1997

