
Magyar Kutatók 8. Nemzetközi Szimpóziuma 
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 313 

A General Purpose Model Visualization 
Environment 

Tamás Mészáros, Gergely Mezei, Hassan Charaf 
{mesztam, gmezei, hassan}@aut.bme.hu 

Abstract: The creation and handling of Domain-Specific Modeling Languages (DSML)is a 
fastly evolving research area of software development. DSMLs are able to describe the 
modeled problems in an abstract and expressive way, often better than general purpose 
modeling languages, like UML would do. DSMLs can also be used by business specialists 
who do not have exhaustive programming knowledge, consequently, the visualization of 
such models is of key importance. Visual Modeling and Transformation System (VMTS) is a 
general purpose metamodeling environment, which facilitates visual editing of models and 
metamodels. Furthermore, it also provides a powerful framework (VMTS Presentation 
Framework – VPF), which is suitable for designing model element appearance in a very 
comfortable way. The goal of this paper is to describe the design decisions of VPF and 
compare its capabilities with other metamodeling environments. 

Keywords: Metamodeling, Domain-Specific Language 

1 Introduction 
Model-driven software engineering became an essential approach in software 
development. The usage of general purpose modeling languages is not always 
satisfactory, because they do not exactly fit to the modeled area. Domain-Specific 
Modeling Languages fulfill this requirement, though, they have to be created 
separately for each and every application area. Metamodeling is an approach to 
define the elements and the relations of such a language, however, the definition 
of the concrete syntax (the visualization of the elements) is also needed. 

Visual Modeling and Transformation System (VMTS) is an n-layer metamodeling 
environment [2]. The VMTS Presentation Framework (VPF) is the graphical 
environment part of VMTS used for displaying and editing the models with their 
proprietary representation. VPF highly builds on the newest technologies provided 
by the .NET Framework including WPF (Windows Presentation Foundation) and 
XAML [3]. XAML is an XML based language developed to describe the visual 
appearance of Windows controls. Although the framework was written in C# and 
it is based on .NET technologies, the solutions discussed here are reusable in 
every high-level programming environment. 



T. Mészáros et al. 
A General Purpose Model Visualization Environment 

 314 

 

Figure 1 
The schematic structure of VMTS 

In Figure 1 the schematic structure of VMTS can be seen. VPF keeps contact with 
the models - stored in the database – through the AGSI data access layer. The 
modeling space of VMTS (and AGSI) distinguishes two types of model elements: 
nodes and edges. Nodes represent the entities in the model, while edges define the 
relations between the entities. However, edges are attributed in VMTS, so they 
can also have their own properties. Nodes and edges are organized into models 
(Package in AGSIs terminology), and the container object of several models is 
called Project. 

There are several frameworks that have graphical editing support for the DSMLs 
in a more or less user-friendly way, but none of them is fully capable of 
expressing the domain-specific constraints. Although the visualization of DSMLs 
is not fully supported in these frameworks they use many notable solutions. 
Besides the introduction to metamodeling in VPF, this paper also introduces the 
features available in other metamodeling frameworks. 

2 Related Work 

The Generic Modeling Environment (GME) [4] is a highly configurable 
metamodeling tool supporting two layers: a metamodel-, and a modeling layer. 
GME uses a plugin-based architecture. Plugins can be defined using a COM 
interface. In GME the basis of the modeling is the modeling paradigm. Model 
paradigms act as the metamodel for the particular domain specific language. GME 
is a graphical metamodeling environment that supports the basic requirements for 
editing metamodels. Moreover, it can be used only for modeling with the MOF-
based metamodeling hierarchy (modeling space defined by OMG, it does not 



Magyar Kutatók 8. Nemzetközi Szimpóziuma 
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 315 

support n-layer metamodeling, like VMTS does). GME is the metamodeling tool 
from which VMTS has borrowed its base concepts. 

Eclipse [5] is possibly the most popular, highly flexible, open source modeling 
platform that supports metamodeling. Eclipse is based on plugins, that grants the 
required flexibility. Eclipse Modeling Framework (EMF) can generate source 
code from models defined using the Class Diagram definition of UML[1]. EMF 
definitions contain the abstract syntax (the metamodel) only, the concrete syntax 
(the visualization) cannot be defined this way. The generated code contains base 
classes for editing the models, but the appearance is not customized. Graphical 
Editing Framework (GEF) is a part of the Eclipse project that provides methods 
for creating visual editors. EMF does not support code generation for GEF. 
Graphical Modeling Framework (GMF) is a new Eclipse project that is under 
validation. The goal of GMF is to form a generative bridge between EMF and 
GEF, whereby a diagram definition will be linked to a domain model as input to 
the generation of a visual editor. 

The GenGed (Generation of Graphical Environments for Design) [6] environment 
is suitable for creating visual language definitions. It is rather presentation 
oriented: instead of metamodeling, it specifies graphical symbols, constraints and 
their connections; from this information, graph rewriting rules (Alphabet Rules) 
are generated, which serve as the graph grammar used to parse the visual 
language. GenGed uses AGG [6] as the internal graph transformation engine. For 
the editing features, a graphical editor is also generated to support the newly 
created visual languages. Transformation-Based Generation of Modeling 
Environments (TIGER) [7] is the successor of GenGed. It uses precise visual 
language (VL) definitions and offers a graphical environment based on GEF. 

JKOGGE [8] is a tool for generating CASE tools. The tools built with JKOGGE 
consist of three parts: a base system, components, and documents. Documents are 
represented as distributed graphs. Components are realized with plugins that 
perform a well-defined task, e.g. editors. 

Another framework is the Diagram Editor Generator (DiaGen) [9] that uses its 
own specification language for defining diagrams. The specification is checked 
and structurally analyzed using hypergraph transformations and grammars. 

MetaEdit+ [10] offers a tool suite for defining a domain-specific modeling 
language with CASE support. The tool offers a full CASE support for the defined 
language, allowing developers to model using concepts that represent the product 
domain. MetaEdit+ allows viewing the design data in diagrams, tables and 
matrices. It offers an API for accessing components and enhances debugging. 



T. Mészáros et al. 
A General Purpose Model Visualization Environment 

 316 

3 Architecture 

The VMTS Presentation Framework is based on the Model-View architectural 
design pattern [11]. The Model classes maintain the view-independent data and 
encapsulate the methods which operate on the data. The model elements 
themselves are handled by using the so called AGSI Interface. Each model object 
wraps the appropriate AGSI object. The AGSI Interface facilitates low-level 
model operations, while the Model classes provide high-level, domain-specific 
operations. There can be only one instance of Model classes for each item in our 
model. However, we may have several Views for the same Model object. The 
View objects are responsible for visualizing the model elements on the screen. 
The Views also receive and process user input events such as mouse clicks, mouse 
movements, key presses and all the general windows input events. Based on the 
user inputs, the appropriate modifications are performed on the Model object. The 
Model and View classes together realize the Observer pattern, consequently each 
View is immediately updated after the modification of the Model object. 

The different aspects can be configured with the help of external plugins. The 
plugins are assigned to a specific metamodel through assembly level .NET 
attributes. Similarly, the metamodel-elements are assigned to the specific 
visualization with attributes. The architecture supports multiple views for the same 
model, and also supports the usage of different plugins for different views. The 
AGSI objects maintain two different fields for model-related and view-related 
information, these fields are referred to as PropertyXML and InfoXML fields. The 
InfoXML document of the model describes the views assigned to the model, 
including plugin and view identifiers. The InfoXML document of a model element 
describes the different views assigned to the element. 

In Figure 2 the architecture of model-view classes is shown. 

 
Figure 2 

Model-View architecture 

1..* 



Magyar Kutatók 8. Nemzetközi Szimpóziuma 
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 317 

All model classes derive from the BaseModel class. Basically we distinguish two 
types of model elements: shapes and lines. Shapes represent nodes in the model, 
they can be the container of other model elements. Lines represent connections 
between two nodes in the model. The AGSI model itself is encapsulated by a 
DiagramModel object which is a ShapeModel descendant as DiagramModel 
provides all the features which are also provided by a Shape, e.g. containment of 
other elements, private coordinate system. We have also defined a View class for 
each of the basic Model classes. ShapeView and LineView classes are used to 
present shape and line-based model elements. The DiagramView class is used as a 
canvas, on which the elements of a model are placed. Each DiagramView instance 
has exactly one plugin assigned to. This plugin is used to instantiate the specific 
views for the model elements. 

3.1 Model Classes 

Default Model classes provide several indispensable features to handle model 
elements. Loading and saving element properties is performed with the help of 
these classes. Furthermore, the Model classes have the responsibility to instantiate 
the appropriate View class for an element. Custom model classes can be defined in 
external plugins as well. These plugins can be attached to a specific metamodel 
using .NET attributes. However, as we can have at most one Model object for 
each element in our model, we can define at most one custom Model class for 
each of the model elements. The plugin developer should take care of handling all 
the Views are handled by a common Model object. 

3.2 View Classes 

When visualizing a model, we do not have to strictly follow the containment 
hierarchy defined by AGSI and Model level. Instead, we have the possibility to 
skip several levels in the containment chain, e.g. we can place an element into the 
container of its model-level container. However, we do not have the possibility to 
contradict to the metamodel hierarchy: a contained object on model level cannot 
be the container of its model-level container in a view. As a consequence, the 
visual containment hierarchy is not necessarily the same as the model hierarchy. 
We can navigate towards the root element (DiagramView) using the HostShape 
property of the View in the visual tree, while – at the same time – the Container 
property is used to reach the container in the model (AGSI) tree. 

In order to support the aforementioned features, we distinguish two types of model 
Views: primary and secondary. Changes performed on the primary view initiate 
the modification of the model hierarchy. Consequently, the primary view must 
always reflect the exact model level containment hierarchy. We can have at most 
one primary view and several secondary views. 



T. Mészáros et al. 
A General Purpose Model Visualization Environment 

 318 

Visual information is stored in the InfoXML field of an element. The same field is 
used for all the existing Views. Each DiagramView has a unique identifier, which 
is referenced by the View elements on the DiagramView. 

Element views are based on windows controls. Their appearance is defined by the 
designer of the plugin. Since views are inherited from windows controls, all the 
element views have their own event handling, including mouse and other input 
events. We provide two possibilities to define the appearance of an element: (i) we 
can either derive a new class from the ShapeView (or LineView) class, where we 
have to define visualization and behavior using C#. (ii) We can describe 
visualization using XAML excusively. By using XAML and databinding, we can 
create a new domain specific plugin without manual coding and deep 
programming knowledge. We can use Control Templates and Styles to completely 
redefine the appearance of a plugin element. Model dependent visualization can be 
performed using the built-in databinding features of .NET. 

If there is no appropriate plugin for a model, a default plugin (the so called 
Abstract Syntax Plugin) is applied. The Abstract Syntax plugin provides the basic 
features to visualize essential properties and containment. In Figure 3 the same 
model can be seen presented with both a plugin of a control flow language and the 
abstract syntax plugin. 

 
Figure 3 

A model visualized with and without a plugin 

3.2.1 Workspaces 

Numerous modeling languages support the visualization of containment 
relationship between elements. Probably the simplest example is the well-known 
UML Statechart (Fig. 4) diagram. States can behave as composite states which 
means that they contain several other states. The containment is possible in an 
arbitrary depth. 

 
Figure 4 

UML Statechart diagram 



Magyar Kutatók 8. Nemzetközi Szimpóziuma 
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 319 

In other cases, it may be necessary to arrange the contained elements based on a 
predefined strict order. To visualize a program or protocol stack (Fig. 5), the levels 
of the stack should be arranged uniformly from the bottom towards the top of the 
stack. 

 
Figure 5 

Protocol stack plugin 

To fullfill the presented requirements, we have introduced a general component, 
called Workspace which serves as a container for other View objects. Each 
ShapeView descendant object may contain an arbitrary number of Workspaces 
providing thus visual separation of contained element, although, this kind of 
separation is not present in the model hierarchy. Each Workspace has its own 
coordinate system including offset, rotation and zoom. Furthermore, Workspaces 
can apply custom layout and order contained items automatically as well. The 
class hierarchy of the Workspace and the connecting classes is illustrated in Fig. 6. 

 
Figure 6 

Container and contained classes of Workspace 



T. Mészáros et al. 
A General Purpose Model Visualization Environment 

 320 

3.3 The Framework 

The Framework is a singleton object which provides a connection point between 
the Model-View layer and the modeler application (Adaptive Modeler). The 
different views, windows of the application has to be updated after the editing of 
the model elements. Subscribing the appropriate updater methods of the 
application to the events of each model object would result in a significant 
performance loss. Framework behaves as an event proxy, but from the 
applications point of view the Framework is an event source. These events are 
fired when the model hierarchy or relevant properties of the model change. From 
the Model-View layers point of view the Framework provides notifier methods 
which are called during changes in the Model-View layer. As a reaction, the 
notifier methods initiate the firing of the relevant events. 

3.4 Persistence 

When designing the persistence of View classes, the two main goals were being 
independent from the database representation format and providing a declarative 
solution to define persistable data. To simplify the work of plugin developers, we 
have introduced the Externalizable .NET attribute. Object level fields and 
properties marked with this attribute are automatically serialized (deserialized) 
during the save (load) process. Custom serialization can be performed by 
overriding the Externalize and Internalize methods of View classes. 

The serialization process consists of two parts: (i) A generic store 
(ExternalizerStore) is filled with the externalizable fields and properties of the 
objects. ExternalizerStores contain tag-value pairs. The value can be of several 
built-in types (including numeric types, strings and basic geometric types like 
Point and Vector), an other ExternalizerStore or an arbitrary user object which 
implements the IExternalizable interface. If the value is of the type 
ExternalizerStore, we can build a tree of tag-value pairs. (ii) The 
ExternalizerStore is transformed into the final data-representation format using a 
format specific Externalizer implementation. We support currently a default Xml 
Externalizer only. 



Magyar Kutatók 8. Nemzetközi Szimpóziuma 
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 321 

4 Environment 

4.1 Browser Windows 

In addition to the possible Diagram Views, model hierarchy and model elements 
can also be inspected using the Model Browser and the View Browser windows. 
These views present the model-based and the view-based containment hierarchy. 

 
Figure 7 

Model and View browser windows 

The Property Grid is used to provide editing facility for the properties of the View 
objects. The Property Grid always visualizes the common properties of all selected 
elements. This feature is achieved by the runtime generation of a composite 
object, which has exactly the properties which are contained by all the selected 
objects, and forwards any events to the wrapped objects. With the help of the 
wrapper object we are also able to insert the appropriate Undo commands right 
before editing a property. 

4.2 Undo-Redo 

Actions performed by the user should be able to be undone and redone. For this 
purpose, we use the fusion of the Command and the Composite design patterns 
[11]. Any changes in the model are encapsulated into a Command object which 
contains all the necessary information to roll back the changes or commit them 
again. The Command objects are collected in an Undo and a Redo stack, so we 
can always undo and redo the last operation. 

There are cases when several Commands should be threatened as a single user 
event. For example deleting a View on the Primary View indicates the deletion of 
the Model object (and the AGSI object) as well. Two separate Command objects 
are placed onto the stack this case, but we would like to roll them back in one step 
of course. For this purpose we have extended the Command objects so that they 
can contain several other commands and undo/redo them in one step. 



T. Mészáros et al. 
A General Purpose Model Visualization Environment 

 322 

 
Figure 8 

Processing composite undo-commands 

Conclusions 

The main ideas and architectural decisions made by designing VPF were 
presented in the paper. We have separated the model and the view logic, the 
separation has taken place at class level as well. Several views can be maintained 
for a model. The views do not necessarily reflect the proper model containment 
hierarchy, but can emphasize an aspect of the model. The actual model hierarchy 
can be seen in the Model Browser window and in the Primary View. The Primary 
View is also used to edit the model, however, Secondary Views are only used for 
visualization. Views can be fully customized with plugins which can be 
configured either using traditional C# code and class inheritance, or with the help 
of XAML documents. Object properties are serialized with the help of a powerful 
externalization mechanism. The externalizer engine is independent from the target 
data format, but it is flexible enough to process arbitrary objects. 

Future work includes automatic element placing and ordering, furthermore an 
intelligent line routing method is required in connecting two shapes. 

References 

[1] UML – Unified modeling language: http://www.omg.org/uml 

[2] Visual Modeling and Transformation System: http://vmts.aut.bme.hu 

[3] XAML - Extensible Application Markup Language:   
http://msdn2.microsoft.com/en-us/library/ms752059.aspx 

[4] Lédeczi Á, Bakay Á, Maróti M, Vőlgyesi P, Nordstrom G, Sprinkle J, 
Karsai G: Composing Domain-Specific Design Environments, IEEE 
Computer 34(11), November, 2001, pp. 44-51 

[5] Graphical Editing Framework, http://www.eclipse.org/gef/ 

[6] Taentzer G: AGG: A Graph Transformation Environment for Modeling 
and Validation of Software, In J. Pfaltz, M. Nagl, and B. Boehlen (eds.), 



Magyar Kutatók 8. Nemzetközi Szimpóziuma 
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 323 

Application of Graph Transformations with Industrial Relevance 
(AGTIVE'03), volume 3062, Springer LNCS, 2004 

[7] Erhig, K., Ermel, C., Hansgen, S., Taentzer, G.: Generation of Visual 
Editors as Eclipse Plug-Ins, http://www.tfs.cs.tu-berlin.de/~tigerprj/papers/ 

[8] JKOGGE   
http://www.uni-koblenz.de/FB4/Institutes/IST/AGEbert/Projects/MetaCase 

[9] Minas M.: Specifying Graph-like diagrams with DIAGEN, Science of 
Computer Programming 44:157–180, 2002 

[10] MetaEdit+, http://www.metacase.com/ 

[11] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements 
of Reusable Object-Oriented Software, Addison-Wesley Professional 
Computing Series 

 


