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Abstract: The multilayer perceptron is an artificial neural network that learns nonlinear 
function mappings. Nonlinear functions can be represented by multilayer perceptrons with 
units that use nonlinear activation functions. The neurons in the multilayer perceptron 
networks typically employ sigmoidal activation function. The next state of the J-K fuzzy flip-
flops (F3) using Fodor, Yager and Dombi operators present S-shaped characteristics. An 
interesting aspect of F3-s might be that they have a certain convergent behavior when one 
of their inputs (e.g. J) is exited repeatedly. If J is considered the equivalent of the 
traditional input of a neuron (with an adder unit applied before J), K might play a 
secondary modifier's role, or can just be set fix. The paper proposes the investigation of 
such possible F3-networks as new alternative types of neural networks. 
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1 Introduction 

Neural networks and fuzzy set theory has been the object of intense study and 
application, especially in the last decade. There are several manners to combine 
neural networks and fuzzy logic. The main idea is using the high flexibility of 
neural networks produced by learning, in order to tune the membership functions 
used in fuzzy control. The aim of this approach is to improve neural network 
frameworks by bringing some advantages of fuzzy logic. Obviously the 
introduction of neural networks and fuzzy control into areas in which the analysis 
and design of control systems is traditionally performed using techniques whose 
effectiveness is well established, has led to a certain differentiation in the way in 
which researchers and designers consider these new methodologies. The real 
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problem does not lie in a direct comparison between ‘new’ and ‘traditional’ 
methodologies, but rather in their field of applicability. Both neural networks and 
fuzzy models were developed to deal with problems which were hard or 
impossible to solve using traditional techniques. When direct comparisons are 
made, one inevitably risks going beyond the specific environments in which the 
methodologies should be considered. The aim of this study is essentially that of 
showing how neural networks and fuzzy model can be usefully merged and 
employed to solve nonlinear control and modeling problems, simplifying and 
automatizing both the process modeling and the controller synthesis phases. 

2 Artificial Neural Networks (ANN) 

Artificial neural networks are built from simple units, called neurons. The 
processing ability of the network is stored in weights, obtained by a process of 
adaptation to, or learning from a set of training patterns. These networks usually 
organize their units into several layers [8]. The first layer is called input layer – the 
input signals is feedforward to the network, the last one the output layer – the 
neurons forward the information in the outside word. The intermediate layer is 
called hidden layer. Classical artificial neural networks, such as a feedforward 
network allow signals to flow from the input units to the output units, in a forward 
direction. 

The role of the network is to learn the association between input and output 
patterns, or to find the structure of the input patterns. The learning process is 
achieved through the modification of the connection weights between units. The 
basic neural unit processes the input information into the output information using 
the computation and the transformation of the activation. A unit collects 
information provided by the external world (other units) to which it is connected 
with weighted connections. These weights multiply the input information. 

The architecture (i.e. the pattern of connectivity) of the network, along with the 
transfer function used by the neurons and the synaptic weights, completely specify 
the behavior of the network. 

3 Fuzzy J-K Flip-Flops 

J-K flip-flops are elementary digital units providing sequential features/memory 
functions. Their definitive equation is used both in the minimal disjunctive and 
conjunctive forms. Fuzzy connectives do not satisfy all Boolean axioms, thus the 
fuzzy equivalents of these equations result in two non-equivalent definitions, 
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‘reset and set type’ fuzzy flip-flops (F3) by Hirota & al. when introducing the 
concept of F3 [2, 3]. There are many different norms known from the literature 
which play important roles in applications or by their mathematical properties. 
Only very few have been investigated from the point of view of what kind of F3 is 
generated, namely the standard, algebraic norms and a pair of operations 
generated from the standard and the Łukasiewicz operations, later proposed by 
Fodor [2, 3, 7]. 

From a practical aspect it is confusing that reset and set type F3s sometimes do 
have very different behavior. (The unique exception is the Fodor F3.) 

In [7] we studied the behavior of F3 based on various fuzzy operations. We 
evaluated the graphs belonging to the next states of reset and set type fuzzy flip-
flops for various values of J, where each diagram presented the curves for different 
values of Q and K. We noticed, that the characteristics of Fodor type fuzzy flip-
flops (F4), Yager and Dombi class graphs produced smooth (differentiable) curves 
and surfaces with no breakpoints at all. This paper presents the behavior of these 
three classes of F3s, according to the particular cases when one of the input K or 
the present state Q has a constant value. 

Figure 1 depicts the behavior of F4 for some typical values of J, K with a constant 
Q=0.25 value, and K=0.00 for typical Q and J values. The characteristics 
belonging to these cases show sigmoidal behavior. 

 

 

  

 

 

 

Figure 1 
Characteristics of F4 for various values of J, K 

3.1 Yager and Dombi Fuzzy Flip-Flops 

Several classes of functions had been proposed whose individual members satisfy 
all the axiomatic requirements for the fuzzy union and intersection. The behavior 
of the Yager fuzzy flip-flop was shown in [7], for typical cases of parameter w. 
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One of these classes of fuzzy unions is known as the Yager class t-conorm and is 
defined by the function: 

1/( , ) min 1,( ) ,w w w
wu a b a b⎡ ⎤= +⎣ ⎦  (1) 

where values of the parameter w lie within the open interval (0,∞ ). 

The family of Yager t-norms, introduced in the early 1980s by Ronald R. Yager, is 
given by 

1/( , ) 1 min 1, ((1 ) (1 ) ) .w w w
wi a b a b⎡ ⎤= − − + −⎣ ⎦  (2) 

In the formulas, a represents the membership grade for an element in fuzzy set A, 
and b represents the membership grade for an element in fuzzy set B. 

The Yager t-norm is nilpotent if and only if 0 < w < +∞ (for w = 1 it is the 
Łukasiewicz t-norm). The family is strictly increasing and continuous with respect 
to w.  

Using these definitions we can find the solution for: 

[ ]( 1) ( ,1 ), (1 , )R w w wQ t u i J Q i K Q+ = − −  and (3) 

[ ]( 1) ( , ), (1 ,1 ) .S w w wQ t i u J Q u K Q+ = − −      (4) 

Figure 2 presents the diagrams for Yager reset and set type F3, for the typical case 
Q=0.50 and w = 2. The real curves are here also smooth and S-shaped. 

 

 

 

 

 

 

 

 

Figure 2 
Characteristics of Yager reset and set type F3 for various values of J, K 

The main feature of these norm is that as parameter w varies among 0 and infinite, 
the t-norms (and t-conorms) obtained span the space of fuzzy t-norms (and t-
conorms) between the drastic product (drastic sum) and the minimum (maximum) 
[6]. 
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We would like to present the unified equation of reset and set type as it was 
proposed in [10]. This equation simultaneously involved both set and reset 
characteristics. Therefore, in order to extend the binary J-K flip-flop to a fuzzy 
flip-flop smoothly, we must apply the newly defined function 

( ) ( ) ( )( ) ( )
( )( ) ( )( ) ( )

1 1  if  
( 1)

1 1  if 

J Q K Q J K
Q t

J Q K Q J K

⎧ ∨ ∧ − ∨ − ≥⎪+ = ⎨
∧ − ∨ − ∧ ≤⎪⎩

    (5) 

The fundamental equation of the binary J-K flip-flops 

( )( )( )( 1)Q t JK JQ KQ J K J Q K Q+ = + + = + + +     (6) 

Using complementation, Yager-class t-norm and t-conorm, the equation (6) is 
expressed as 

( )( ) ( ) ( ) ( )( )( 1)    1         1    1w w w w wQ t J u K i J u Q i K u Q+ = − − −   (7) 

One can easily confirm that equation (7) is equivalent to equation (5). In a similar 
way, using complementation and Dombi-class operators, the equation of the next 
state is expressed as 

( )( ) ( ) ( ) ( )( )( 1)    1         1    1Q t J u K i J u Q i K u Qα α α α α+ = − − −   (8) 

where 

( ) αααα /1

1
b
11

a
11

1b,au −−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+

=     (9) 

and 

( ) αααα /1

1
b
11

a
11

1b,ai

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+

=                (10) 

are called the Dombi operators, the parameter α lies within the open interval 
(0,∞ ). 

The aim of the unification was the use of the fuzzy J-K flip-flop as a neuron. In 
order to test the behavior of the curves with regard to the shape and curvature, 
several characteristics were performed. Several values of the Yager parameter 
were considered, in an effort to tune the dissimilarity measure. On one hand the 
equality K=1-Q, and on the other hand the Yager t-norm and t-conorm with 
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different parameters w are used. The worst result, the linear characteristics, are 
obtained when values w < 2 are used (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3 
Characteristics of unified Yager type F3 for various values of J, K 

Figure 4 depicts typical values in the Dombi operator case for the typical cases 
when α = 1, 4, 6, 10 and 100. 

If J = 0, K = 0 or Q = 0 the values are obviously at the limit. These curves are also 
smooth S-shaped sigmoidal curves. 
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Figure 4 

Characteristics of unified Dombi type F3 for various values of J, K 

4 Fuzzy J-K Flip-Flop as a Neuron 

With the use of fuzzy logic techniques, neural computing can be integrated in 
symbolic reasoning to solve complex real world problems. In fact, artificial neural 
networks, expert systems, and fuzzy rule systems, in the context of approximate 
reasoning, share common features and techniques. A model of fuzzy system is 
proposed, in which an artificial neural network-like approach is designed to 
construct the knowledge base of an expert system. 

We intend to do some comparisons of performed pertaining to the usefulness and 
realization of several logical connectives, followed by a purposeful fuzzy 
sequential system design in order to construct a network performing better than 
those described in the literature. The combinational part of the circuit will be 
embodied in a single layer neural network in which weights are adjusted on the 
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basis of training situations. Numerical considerations highlight the performance of 
the design process. 

In our concept, K=1-Q is proposed, because if input K of the fuzzy J-K flip-flop is 
connected with the Q output, we receive an elementary fuzzy sequential unit with 
just one input and one output. The proposed F3 next state values follow a 
sigmoidal function such as in an artificial neural network neuron. 

It is well known, that the nonlinear characteristics exhibited by neurons are 
represented by a transfer function such as a binary sigmoidal function. The neuron 
uses the standard sigmoidal activation function, and a convenient mathematical 
form for this is given by: 

( ) ( ) ( )
1

1a x a
x

e
λ

λ
σ

− −
=

+
                  (11) 

This is the form of the ‘S-shaped sigmoid curve’ transfer function, where a is the 
mean value and λ is the slope of the function. The sigmoid also has an easily 
calculated derivative, which is used when calculating the weight updates in the 
network. It thus makes the network more easily manipulable mathematically. 

An interesting aspect of F3-s might be that they have a certain convergent behavior 
when one of their inputs (e.g. J) is exited repeatedly. This is true even if the other 
input (K) is kept at a constant value. The behavior is more versatile if both inputs 
are given a series of changing values. If J is considered the equivalent of the 
traditional input of a neuron (with an adder unit applied before J), K might play a 
secondary modifier's role, or can just be set fix (Figure 5). The paper proposes the 
investigation of such possible F3-networks as new alternative types of neural 
networks. 

 

Figure 5 
Fuzzy J-K flip-flop as a neuron 

Conclusions 

In this paper, various special fuzzy J-K flip-flops were defined as elementary units 
in a new fuzzy sequential digital model. In the future research, of particular 



Magyar Kutatók 8. Nemzetközi Szimpóziuma 
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 391 

interest might be the areas of pattern recognition and computer vision, natural 
language and text understanding, speech processing, data mining and also general 
neural computing, machine learning, further fuzzy hardware architectures, 
software tools, and others for possible applications and further investigations. 
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