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Abstract: Real-time digital signal processing applications are everywhere. The most 
essential part of these applications are FIR filters. For these systems to achieve the real-
time demands it is essential that filtering executes as fast as possible. For systems with 
sever constraints - limited resources, low power consumption – stronger hardware is not a 
solution. The solution is to evaluate FIR filter algorithms in the context of hardware 
capabilities. Based on this we create optimized implementations for the FIR filter 
algorithms, both in high-level programming languages and in assembly. Based on the 
profiling results from these implementations we have been able to deduce possible 
optimization methods. With the usage of these methods we have been able to produce a 
highly optimized FIR filter implementation for the TMS320VC5510 DSP processor. To 
verify the results we conduct a benchmark which contains all the implementations and an 
optimized FIR filter implementation created by Texas Instruments. 

1 Introduction 

FIR [1,5,6,7] (Finite Impulse Response) filters are finite impulse response digital 
filters. FIR filters could be written in the following form, where p is the filter 
order, x(n) is the input signal, y(n) is the filtered signal, biare the filter 
coefficients. 
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FIR [1,5,6,7] filters are the vital components of the digital signal processing 
applications [2]. They represent a critical point in real-time digital signal 
processing applications, therefore their as far as possible optimal implementation 
means a significant advantage in the runtime performance of these applications. 
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There are several algorithms for FIR [1,5,6,7] filters, each have their advantages 
and disadvantages. To use the appropriate one we must take into consideration the 
possibilities provided by the hardware. It’s not enough to choose an algorithm 
based upon their complexity. To achieve maximum runtime performance, context 
dependent optimizations are required. All the evaluated filter algorithms have an 
O(n) complexity, where n is the filter order. To optimize the implementations we 
need to evaluate the algorithms and their properties. We will present an evaluation 
of algorithms in the following sections. All implementations can be found in 
Appendix A. 

2 Algorithms 

2.1 FIR Buffer Shifter 

The buffer shifter algorithm is the simplest to implement. The buffer symbolizes 
the filter window, which size is equal to filter’s order, that is, higher filter order 
means bigger buffer size. This is the drawback of the algorithm. It is required to 
shift the filter window for every filtered sample and to insert the new sample into 
buffer. In case of processors, which support the MACD (Multiply Accumulate 
With Data Move) instruction, this algorithm is optimal. Multiplication, 
accumulation and buffer shifting could be executed in one operation, leading to a 
very efficient implementation. 

 
Figure 1 

Symbolizes the actions required in case of an incoming sample for the buffer shifter algorithm. It is 
necessary to move all accumulated samples in order to insert a new one. x is the filter window, L is the 

order of the filter. 
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2.2 FIR Double Buffer 

In case of the double buffer algorithm, the buffer that forms the filter window has 
a size which is twice the size of the filter order. In this case there is no need to 
shift the samples in the buffer, because the incoming samples are written into two 
positions in the buffer, also a state parameter is modified at the end of filtering. 
This state parameter determines the buffer slot for the input sample and the 
beginning of the buffer for the input sample filtering. In case of simple hardware 
this is the most optimal implementation, also for processors which support 
vectorized operations it can be used extremely efficiently as well. This 
implementation is redundant; it consumes twice as much memory as the other 
algorithms. This could be a drawback in case of systems with limited resources or 
filters with high order. 

2.3 FIR Circular Buffer 

In case of circular buffer algorithm the size of the buffer is equal to the order of 
the filter. The buffer is represented as a circle. We start from a defined position 
and we go around. The algorithm has a state which represents the starting point in 
the circle. This implementation is extremely efficient is case of processors which 
support circular addressing mode. This can be found in most of the DSP (Digital 
Signal Processing) processors. On the other hand, without hardware support the 
implementation performs poorly, because of the manual bound checking for the 
end of the circle. 

 
Figure 2 

The image on the left shows that for every incoming sample we rotate the circle buffer 
counterclockwise. As it shows on the left image the coefficient buffer doesn’t get rotated - it always 

starts from the same point. 
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3 Optimization Methods 

To achieve the desired performance in our application, often the right algorithm 
for the hardware is not enough. For example, a simple C implementations use 
floating point calculations. Some processors do not support floating point 
operations, only integer arithmetic. For these processors the provided compilers 
produce software emulation for the floating point calculations. Often the 
processor’s word length is shorter than the floating point number’s word length. 
This means that the execution of the generated code will be slow and it will 
occupy more space. The solution is to represent the decimal numbers in fixed 
point format. 

3.1 Fixed Point Formats 

The most common fixed point format is Q0.15. It can be represented as the 
following: 

∑
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The word length B= (M + 1) bit, where M is the number of magnitude bits plus 
one sign bit. The MSB (most significant bit) bit is the sign bit, which represents 
the sign of the number. The value of the sign bit is 0 if the number is positive, 1 if 
the number is negative. 

The fixed-point DSP processors usually use the second complement format, in this 
way the addition and the subtraction can be realized with the same hardware. 
General formula to calculate the decimal value in case of B binary decimal 
number: 
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The Q0.15 fixed point format can be used to represent decimal values from -0.999 
to 0.999. This is adequate enough for FIR filter calculations. 

3.1.1 Fixed Point Formats in ANSI C 

The C programming language doesn’t contain fixed point types, so we need to 
implement our own fixed point library. The Q0.15 format is isomorphic with a 16 
bit signed integer. Simply a type synonym is created for that built-in variable type 
which suits our needs; in this case this is a 16 bit integer. In case of a 16 bit 
processor int is 16 bit long for the C compiler. There are situations when more the 
one variable type is 16 bit long. This does not mean that it’s unimportant which 
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variable type is used; because the compiler generates different code for different 
types, apart from the fact that their length is identical. This is the case with the C 
compiler provided with Texas Instruments Code Composer Studio, which is used 
for C55xx processors. The difference between the speeds of the generated codes 
can be drastic. In case of C55xx the most effective code is achieved when short int 
is used as 16 bit integer, which in our case is marked with i16_t synonym. In this 
case the compiler takes full advantage of every available register. The highest 
priority for the fixed point library is execution performance. We have to keep in 
mind that we want to create simple operations like addition, subtraction, 
multiplication, and division. In these cases the preparation for the function call 
makes up most of the execution time. This can be prevented if we use macros 
provided by the C language. In this case calls to our routines will be replaced with 
the appropriate operations at compile time, thus eliminating the function call. The 
same effect can be achieved with the usage of the inline keyword. It’s a more 
elegant and type safe solution. It’s advised to use this if our compiler supports it. 
Also it’s standard C99.We can implement our algorithms to use fixed point 
calculations using the fixed-point C library. 

4 Fixed Point FIR Implementations 

In case of the buffer shifter implementation, considering the C55xx processor’s 
hardware this is not the most ideal algorithm. Even with an assembly 
implementation, we wouldn’t achieve significant speed-ups in our application, 
because we wouldn’t eliminate buffer shifting. The double buffer C 
implementation is extremly efficienct, we would not gain a speed up by doing 
assembly based optimization. The C55xx processor has circular addressing 
capabilites. Unfortunately the C complier was not able to generate code which 
takes advantage of this feature. To take full advantage of this algorithm and the 
hardware we have to implement it in assembly. The provided implementation uses 
circular adressing instead of simple pointer arithmetic. 

5 Summary 

Efficiency comparison of the implementations was done on TMS320VC5510 DSP 
[3, 4] processor with the help of Code Composer 3.1. The implementations for 
C55xx processor and the ANSI C [8] implementations are compared to each other 
and to the FIR filter implementation provided by Texas Instruments in their 
library. Results are shown on Figure 3. 
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Figure 3 

The comparison of implementations based on the number of cycles it takes to execute on the 
TMS320VC5510 DSP processor 

All implementations are C callable and are tested in a benchmark program written 
in C. The fastest implementation is the assembly implementation of the circular 
algorithm. This implementation is 20% faster than the optimized filter provided by 
Texas Instruments. The double buffer ANSI C [8] implementation was 1.9 times 
slower than the Texas Instruments filter, but its platform independent and it is an 
implementation made in a high level programming language. This is the most 
ideal implementation if we use a high level programming language. With compiler 
friendly, clean and simple code we can achieve significant execution performance 
as shown by the fir_smpl_dbuf_q15 implementation. Based on the fact that the 
ANSI C [8] version of circular FIR implementation is 6.7 times slower than the 
assembly version we can see that if we want to achieve maximum performance we 
cannot rely on the abilities of compilers even if it is produced by the hardware 
vendor itself. Although some C compilers support circular buffer optimizations, 
we should always check the generated code. The biggest speed-up is achieved by 
using fixed-point calculation instead of floating point calculations. This is a huge 
leap in performance for every processor which only supports integer based 
arithmetic. By switching the calculation operations in the buffer shifter 
implementation 21, 2 times speed-up was achieved. Another advantage of this 
method is that it is simple to implement in a high level programming language. 
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Conclusions 

Performance of algorithm implementations are affected by a lot of factors. Context 
dependent optimizations are the key to high performance implementations. 
Assembly level programming is not necessary to obtain notable performance 
boost, and should only be used if performance is the most critical factor. 
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Appendix A 

FIR buffer shifter, floating point arithmetic implementation: 
f32_t fir_smpl_shuffle_f32( u32_t order, f32_t sample, const f32_t* coeffs, f32_t* buffer )  
{ 
 f32_t accu = 0.0f; 
 u32_t i = 0; 
 --order;  
 for( ; i < order; ++i ) { 
  buffer[i] = buffer[i+1]; 
  accu += buffer[i] * coeffs[i];   
 } 
 buffer[order] = sample; 
 accu += buffer[order] * coeffs[order]; 
 return accu;  
} 
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FIR double buffer, floating point arithmetic implementation: 
f32_t fir_smpl_dbuf_f32( u32_t order, f32_t sample, const f32_t* coeffs, f32_t* buffer, i32_t* state ) 
{ 
 f32_t accu = 0.0f; 
 f32_t* pBuffer = buffer + *state; 
 i32_t i = 0; 
 buffer[order + *state] = *pBuffer = sample; 
 for ( ; i < order; ++i ) { 
  accu += *pBuffer++ * *coeffs++; 
 }  
 if ( --( *state ) < 0 ) 
  *state += order; 
 return accu; 
} 

 

FIR circular buffer, floating point arithmetic implementation: 
f32_t fir_smpl_circle_f32( u32_t order, f32_t sample, const f32_t* coeffs, f32_t* buffer, i32_t* state ) 
{ 
 f32_t accu = 0.0f; 
 i32_t i = order - 1;  
 buffer[*state] = sample; 
 if ( ++( *state ) >= order ) { 
  *state = 0; 
 }  
 for ( ; i >= 0; --i ) { 
  accu += buffer[*state] * coeffs[i]; 
  if ( ++( *state ) >= order ) 
  *state = 0;   
 } 
 return accu;  
} 

 

Fixed point C library implementation: 
#ifndef __FIXED_POINT_H_INCLUDED__ 
#define __FIXED_POINT_H_INCLUDED__ 
#include <types/types.h> 
typedef i16_t q15_t; 
#define Q15_NUMBER_OF_FRACTION_BITS 15 
#define Q15_SLOPE ((f32_t)1/32768) 
#define Q15_INVERZ_SLOPE 32768 
#define i2q15(num)((num)<<Q15_NUMBER_OF_FRACTION_BITS) 
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#define f2q15(num)(num*Q15_INVERZ_SLOPE) 
#define q152i(num)((num)>>Q15_NUMBER_OF_FRACTION_BITS) 
#define q152f(num)((f32_t)num*Q15_SLOPE) 
#definemul_q15(rhs,lhs)(\ 
 ((i32_t)(rhs)*(lhs))>>Q15_NUMBER_OF_FRACTION_BITS) 
#define div_q15(rhs,lhs)(\ 
 ((((i32_t)(rhs))<<Q15_NUMBER_OF_FRACTION_BITS)/(lhs))) 
#endif 

 

The fixed point arithmetic implementations are similar to the floating point 
implementations, only one implementation will be provided, as a reference. 

FIR double buffer, fixed point arithmetic implementation: 
q15_t fir_smpl_dbuf_q15( u16_t order, q15_t sample, const q15_t* coeffs, q15_t* buffer, i16_t* state ) 
{ 
 q15_t accu = 0; 
 q15_t* pBuffer = buffer + *state; 
 i16_t i = 0; 
  buffer[order + *state] = *pBuffer = sample; 
 for ( ; i < order; ++i ) { 
  accu += mul_q15( *pBuffer++, *coeffs++ ); 
 }  
 if ( --( *state ) < 0 ) 
  *state += order; 
 return accu;  
} 

 

FIR circular buffer, assembly implementation: 
.global _fir_smpl_circle_q15 
.text 
; Prototype of the funtion: 
; i16_t fir_smpl_circle_q15(u16_t  order,            T0  
;                                       i16_t  sample, -         T1 
;                                       const i16_t* coeffs,   AR0 
;                                       i16_t*  buffer,  -       AR1 
;                                       i16_t*  state );          AR2 

.asg T0, order 

.asg T1, sample 

.asg AR0, coeffs 

.asg AR1, buffer 

.asg AR2, state 

.asg AC0, accu 
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_fir_smpl_circle_q15: 
psh mmap(ST1_55) 
psh mmap(ST2_55) 
psh mmap(ST3_55) 
bset SMUL, ST3_55  
or #0x340, mmap(ST1_55)   
bset AR1LC   
mov mmap(buffer), BSA01  
mov mmap(order), BK03 
add *state, buffer  
mov sample, *buffer+  
mar *(coeffs + order)     
mar *coeffs- 
sub #0x2, order 
mov order, CSR 
mpy *buffer+, *coeffs-, accu  
|| rpt CSR 
mac *buffer+, *coeffs-, accu 
mov buffer, AC1  
sub mmap(BSA01), AC1 
mov AC1, *state 
pop mmap(ST3_55) 
pop mmap(ST2_55) 
pop mmap(ST1_55) 
mov hi(AC0), T0 
|| ret 


