
VFA-driven Hierarchical Temporal Memory
Input for Object Categorization ∗

Csapó Ádám†, Péter Baranyi

Department of Telecommunication & Media Informatics
Budapest University of Technology and Economics
H-1117 Budapest, Magyar Tudósok körútja 2., Hungary
csapo.adam@gmail.com

Abstract

Results in visual psychology have shown that the location and statistics of nodes, endpoints
and corners carry essential and sufficient information for object recognition. In this paper,
we present a method for object categorization which relies on the combination of the Visual
Feature Array model and Hierarchical Temporal Memories. Experimental results show that
even without taking into consideration statistics other than the spatial distribution of nodes,
two categories can be told apart with a success rate of about 95%. The same results could not
be achieved by simply taking into account grayscale pixel values. Efforts were also made to
generalize the above results to a categorization task among 10 different categories.

1 Introduction
Object categorization and recognition has proven to be a difficult task in artificial
intelligence for several decades. With the recent emergence of biologically inspired
soft-computing methods, promising results in specialized application domains are
more and more common. In this paper, we provide an experimental demonstration
of Biederman’s conjecture in his theory of recognition by components (RBC), ac-
cording to which the statistics of nodes, endpoints and corners carry essential and
sufficient information for object recognition [1]. In order to show the relevance of
this conjecture, the VFA model is combined with the HTM theory in an object cate-
gorization task, and the performance of the network is evaluated given a wide variety
of different input data structures. The first section of this paper consists of a brief
introduction, in which we restate the formal definition of the VFA model, as well
as present its node-filtering applications. This will be followed by a presentation
of the HTM theory for size- and orientation-invariant object representation. Finally,
we give a detailed case study in which a hierarchical temporal memory is used to
distinguish between two, as well as several object categories.
∗This research was supported by the János Bolyai Postdoctoral Scholarship
†Corresponding author

2 Theoretical background
2.1 The VFA model
2.1.1 The VFA data structure
The Visual Feature Array (VFA) was first proposed by the authors in [4]. It is an
orthogonal arrangement of computational units with response characteristics tuned
to different visual features, as is the case with neurons - simple cells - found in the
primary visual cortex. The VFA contains values that represent the output of com-
putational elements corresponding to a certain VFA location. V FA(x, y, z) with
dimensions x x y x z is generated from a two-dimensional u x v sized image repre-
sented by the function f(u, v), where

f(u, v) ∈ N, [0..255] (1)
(u, v) ∈ N2, [0..U]x[0..V] (2)

V FA(x, y, z) ∈ N, [0..255] (3)
(x, y, z) ∈ N3, [0..X]x[0..Y]x[0..Z] (4)

V FA(x, y, z) is the output of the computational unit that corresponds to the x and
y image coordinates, and is sensitive to some image feature represented by z. The
simplest version of the VFA structure, used in this paper, can be pictured as a collec-
tion of layers, stacked up one behind the other, in which each layer (a 2-dimensional
array) represents iso-orientation contour elements. Neighboring layers contain con-
tour elements with neighboring orientations. The VFA of a triangle can be seen in
figure 1.

2.1.2 Lateral inhibition in the VFA model
Because filters used in biological neural networks are oftentimes fuzzy and are not
not precise, values in the VFA are usually not crisp, but blurred between neighbor-
ing layers. To alleviate this problem, in a way similar to biological mechanisms, lat-
eral inhibition can be introduced between compuational elements of each layer and
those of neighboring layers. In general, a 3-dimensional mask array, M(x, y, z), is
defined:

M(x, y, z) =

{
1 if surr(V FA, x, y, z) = max

i∈{−1,0,1}
surr(V FA, x, y, z + i)

0 otherwise
(5)

Where surr(V FA, x, y, z) is a function that yields a neighborhood of point (x, y)
on the image, the shape of which can depend on the feature represented by the
layer in question. The original VFA can then be masked with M(x, y, z), thus
V FAinhibited is obtained:

V FAinhibited(x, y, z) = V FA(x, y, z) ∗M(x, y, z) (6)

Figure 1: VFA of a triangle.

2.1.3 Node-filtering applications in the VFA model

The data representation used by the VFA model makes way for the fast detection
of certain visual features with a very low computational load. One example is the
detection of line segment intersections.

Let V 18 be a vector containing 18 elements. Values of V 18 correspond to the output
of simple cells belonging to a given point of the image. This way, 180 degrees of
orientation are covered in 10-degree increments.

Vxy(i) = V FA(x, y, φi)
φi = 1, 2, 3,18

Intersections can then be detected as follows:

N(x, y) = signum{
18∑

j=1

Vxy(j)− c}

where c is a threshold value. When a binary VFA is used, typically c = 2, and
the meaning of the condition is that a point (x, y) contains a line intersection if it
contains the intersection of two or more line segments.

2.2 The HTM theory
The theory of hierarchical temporal memories (HTMs) was originally proposed in
[3],[2]. It is a hierarchical cortical model that accounts for invariant object repre-
sentations, which are learned using time as a supervisor. The basic idea behind the
HTM theory is that although objects can be seen from very different viewpoints
- thus generating very different patterns on the retina, the cortex still manages to
attribute such a variety of patterns to the same cause when necessary, because the
patterns are seen one after the other, through a very short period of time. Processing
units at each level of an HTM network categorize incoming patterns into different
groups, and yield common output for input patterns belonging to the same group.
Each node in an HTM network is comprised of two computational units: the spatial
pooler and the temporal pooler. Input is fed to the spatial pooler, whose task it is to
discretize the input space. Input vectors are stored if and only if the Euclidean dis-
tance between themselves and all the other previously stored vectors are sufficiently
large (this can be controlled by an input parameter, maxDistance). After the spatial
pooler stores as many input patterns as possible, the temporal pooler learns to at-
tribute one common code to all stored input patterns that represent the same cause.
The decision as to whether two input patterns are generated by the same cause (i.e.,
the same object in the world) is made based on information such as the relative
frequency of the two input patterns occurring one after the other. In such a way, the
HTM network learns to attribute one common ’name’ to patterns caused by the same
object. In its current version, the HTM platform developed by Numenta, Inc., uses
only feedforward connections. Numenta promises to enhance the current version
with lateral and feedback connections soon, which will allow for the incorporation
of attention mechanisms, as well as predictive behavior.

3 Methods
In order to test HTM performance with input obtained from the VFA model, we
used images from the Caltech 101 database. This is a collection of images from 101
categories.

During experiments, we used 35 training images, and 20 test images from each of
the categories. Images were first padded with fringes containing only zeroes, so that
each image used for training and testing would be of the same size (512 x 512 pixels
in this case). The VFA of each image thus obtained was then calculated. This was
followed by a summation along the third dimension of the VFA, and normalization
to obatain values between 0 and 1. Each map could then be pictured as a three-
dimensional waveform (the first two dimensions are the dimensions of the image,
and the third is defined by the values at each pixel), as shown in figure 2. Finally,
every disjoint 8-by-8 pixel region was substituted by the average of its pixel values.
This yielded 64-by-64 pixel images, which, when read pixel-by-pixel in a topolog-
ical manner, produced row vectors with 4096 elements. Finally, every training map
was shifted ten pixels, one pixel at a time in 4 directions (north, south, west and
east). This shifting of images was performed in order to obtain a higher level of in-
variance when teaching the network. In this way, nodes in the network would learn

Figure 2: Two node maps of different instances of the same category. Such node
maps can be thought of as three-dimensional waveforms.

that two shifted instances of the same image belong to the same cause.

In total, n ∗ (35 + 40 ∗ 35) = 1435n training images and 20n test images were used
altogether for n categories. The HTM network used for experiments was created
using the Numenta platform, developed by Numenta, Inc. This is a programming
framework, which has a Python API that can be used to set up custom experiments.
The HTM network used had three layers, and processing units in each layer were
arranged in a topographic manner. This means that neighboring areas in the image
were covered by neighboring processing units. Processing units higher up in the hi-
erarchy were also responsible for larger areas in the visual field. Figure 3 shows the
topography of the HTM network. Figure 4 shows the order in which pixels were read
out of the image in order to convert two-dimensional data into one-dimensional vec-
tors, while ensuring that neighboring nodes would see regions that are neighboring
in the image.

4 Experiments and results
4.1 Distinguishing between two categories
For the sake of simplicity, we first chose to use two categories only - airplanes and
dolphins, and teach the HTM network to distinguish between the two. The choice
of these two categories seemed justified because whereas for humans, airplanes and
dolphins form very different categories, this is not so for object categorization soft-
ware, which perceives both categories as having sleek bodies, for instance.

Two experiments were conducted. In the first experiment, greyscale pixels were
supplied into the HTM network. This experiment was used as a reference, in order
to verify that the use of node structures is more efficient. In the second experiement,
the 3-dimensional waveforms described above were used.

In the first case, when grayscale images were supplied to the HTM network as is,
a 55% hit rate was the best result that was achieved, even when varying network
parameters to a large extent. This shows that grayscale pixel values, by themselves,

Figure 3: The HTM configuration used for training. Level 1 has 64 nodes, level 2
has 4 nodes, and the top level has a single node that uses supervised learning with
the aid of a category sensor. Two-dimensional data was extracted from the node

map in a topological manner.

1 3 9 11 33 35 41 43
2 4 10 12 34 36 42 44
5 7 13 15 37 39 45 47
6 8 14 16 38 40 46 48
17 19 25 27 49 51 57 59
18 20 26 28 50 52 58 60
21 23 29 31 53 55 61 63
22 24 30 32 54 56 62 64

Figure 4: The order in which pixels were read out of the image. The above scheme
was continued recursively.

are not sufficient to characterize a whole category of objects. On the other hand,
using the data set described in section 3, a 97.77% success rate was achieved on
training images, and a 95% success rate was achieved on testing images.

The parameters of the HTM network used were as follows:

Layer 1:

• levelSize = 64

• pooler algorithm: gaussian; sigma = 0.4

• maxDistance = 5

• maxGroupSize = 1435

• grouper algorithm: sumProp

Layer 2:

• levelSize = 4

• pooler algorithm: product

• maxGroupSize = 1435

• grouper algorithm: sumProp

Layer 3:

• levelSize = 1

• pooler algorithm: product

• mapper algorithm: sumProp

maxDistance on the first level defines the minimum value the squares of the Eu-
clidean distances between an input (x) and all the previously memorized inputs (yi)
have to take in order for x to be considered novel. maxGroupSize sets an up-
per limit for the number of quantized inputs that can form a group in the temporal
pooler. The pooler algorithm used by the spatial pooler of higher levels is product,
which means that the belief that an input during inference is similar to a given vector
(previously memorized by the spatial pooler) is calculated as follows:

beliefi =
nchildren∏

j=1

yi[childj] ∗ x[childj] (7)

where nchildren is the number of children the node has, x is the input vector, yi

are the vectors previously stored by the spatial pooler, and a[childn] is the part of
vector a that is received from the nth child.

This approach tends to be less forgiving for differences between input and stored
vectors than the dot algorithm, which uses the scalar product of the supports for the
two vectors instead and is therefore additive:

beliefi =
nchildren∑

j=1

yi[childj] ∗ x[childj] = x ∗ yi (8)

Finally, the temporal pooler at each level uses the sumProp algorithm, which takes
the highest belief from each group to generate a distribution of beliefs over temporal
groups during inference.

Figure 5 shows the patterns learned by a typical first-level node. The frequency rat-
ing below each group represents the number of times the pattern was encountered.
The stability of a group shows how often members of the same group were encoun-
tered one after the other. It is worth noting that in the case of this node, the number
of coincidences encountered and the number of groups formed are equal in all cases.
This means that all inputs to this node were pooled into 1 of 4 categories. Indeed,
with maxDistance = 5, of 64 sensors per node, in order for an input x to be pooled
into its own category,

5 <

64∑

i=1

(xi − yi)2 (9)

for all previous input categories y. This means, that on average:

5/64 = 0.078 < (xi − yi)2 (10)

which implies that on average, corresponding coordinates of x and y hold very dif-
ferent values:

0.2795 < |xi − yi| (11)

Figures 6 and 7 show testing images which were categorized correctly and incor-
rectly, respectively.

The difference in performance between the two approaches is empirically clear, be-
cause even objects of the same category can have very different contrasts in images,
and thus the effect of noise is much worse in the case where grayscale values are
used than in the case where node statistics are used - due to the lateral filters used
by the VFA model.

4.2 Scaling up the network to differentiate among more
categories

A second experiment was conducted to see whether the highly acceptable per-
formance encountered in the categorization task between two categories could be
scaled up to more categories. We chose examples from 10 different categories from
the same Caltech 101 database. Thus we obtained 1435 ∗ 10 = 14350 training im-
ages, and 20 ∗ 10 = 200 test images.

An empirical approach was used to obtain an estimate for parameters that would
cause the network to perform similarly well. transitionMemory was incremented
to 3 on each layer (this means that when the temporal pooler keeps track of which

Figure 5: Groups of input vectors formed by a level 1 node.

Figure 6: Images that were successfully categorized.

Figure 7: Images that were miscategorized.

inputs follow which, a queue of length 3, with decayed memory is used). When esti-
mating the value for maxDistance in the first level, we tried to ensure that 5 times
the number of groups could be formed in the temporal pooler of level 1 as before.
The formation of groups depends on several parameters, but one empirical way to
somehow bias this process is by learning more coincidences in the spatial pooling
phase. Thus, in order for an input to be considered as novel, we set maxDistance
to 1. Obviously - even if our goal is simply to generate 5 times as many quantization
points at the first level - this approximation only works if the structure of the testing
data truly forms a uniform distribution over the [0..5] interval, that is, on average:

√
(1/64) = 0.125 < |xi − yi| (12)

for all x and y vectors which represent the same category. This was not verified for
the testing data used.

Results obtained are not as satisfying as in section 4.1; a hit rate of 65% was
achieved. While this is still way higher than the 10% reference value, evolution-
ary or other methods should be developed to find optimal HTM configurations, to
see whether or not this deterioration is inevitable.

5 Conclusion
Using a combination of the visual feature array model and the hierarchical tem-
poral memory model for invariant object representation, an object categorization
algorithm was obtained. Experimental results demonstrate that:

• Not all types of input to HTMs are equally efficient in object categorization
tasks.

• Grayscale pixels do not adequately represent visual structures, however, the
spatial arrangements of nodes is less sensitive to noise and can be used as
input to object categorization tasks.

• Results for categorization between two categories can be scaled up to 10 cat-
egories using a simple empirical approach, and similar results are obtained,
albeit some deterioration in performance can be observed. The obtained re-
sults suggest that given an optimization technique, higher hit rates might be
achieved.

References
[1] I. Biederman. Recognition-by-components: A theory of human image under-

standing. Psychological Review, 94:115–147, 1987.

[2] J. Hawkins and S. Blakeslee. On Intelligence. Henry Holt Co., 2004.

[3] J. Hawkins and D. George. Hierarchical temporal memory concepts, theory
and terminology. Numenta, Inc. whitepaper, 2006.

[4] B. Resko, A. Roka, and P. Baranyi. Visual cortex inspired intelligent contour
detection. JACIII, 10(5):761–768, 2005.

