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Abstract: The Tensor Product model transformation is a numerical method that is capable 
of uniformly transforming LPV (linear parameter-varying) dynamic models into polytopic 
forms, both in a theoretical and algorithmic context. Using the TP model transformation, 
different optimization and convexity constraints can be considered, and transformations 
can be executed without any analytical interactions, within a reasonable amount of time 
(irrespective of whether the model is given in the form of analytical equations resulting 
from physical considerations, as an outcome of soft computing based identification 
techniques such as neural networks or fuzzy logic based methods, or as a result of a black-
box identification). Thus, the transformation replaces the usual analytical and oftentimes 
complex conversions with a numerically tractable and straightforward series of operations. 
The TP model transformation generates two kinds of polytopic models. Firstly, it 
numerically reconstructs the HOSVD (Higher Order Singular Value) based canonical form 
of LPV models. This is a new and unique polytopic representation. This form extracts the 
unique structure and various important properties of a given LPV model in the same sense 
as the HOSVD does for matrices and tensors. Secondly, the TP model transformation 
generates various convex polytopic forms, upon which LMI (Linear Matrix Inequality) 
based multi-objective control design techniques can immediately be executed in order to 
satisfy the given control performance requirements. 
TP tool is a MATLAB Toolbox that implements the Tensor Product Model Transformation 
based Control Design framework. It is available at http://tptool.sztaki.hu. 
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1 Introduction 

1.1 Motivation and Background 

The development of the Higher Order Singular Value Decomposition (HOSVD) 
based canonical form of Linear Parameter Varying (LPV) dynamic models and the 
TP model transformation was motivated by the significant paradigm changes in 
control theory, mathematics, system modeling and identification theories, 
appearing almost simultaneously in the last few decades. 

1.1.1 Multi-Objective Non-Linear Control Theory 

The Linear Parameter Varying (LPV) representations and Linear Matrix 
Inequality (LMI) based analysis and system control design are in the focus of 
modern control theories. LPV systems appear in the form of Linear Time Invariant 
(LTI) state-space representations where the elements of the S(ρ) system matrices 
can depend on an unknown but at any time instant measurable vector parameter ρ. 
This parameter can be a function of time or state variables. The parameters may 
represent constant but unknown uncertainties or external time signals. These 
properties show relations to the theory of uncertain systems with parametric 
uncertainties and to the theory of LPV systems, too. The application of LPV 
system representations appeared in relation to aerospace control and it represents a 
systematic approach to gain scheduling control for nonlinear systems (Shamma 
and Athans, 1991). Passivity and H∞ theory have been extended to design robust 
controllers for LPV systems, see eg. Lim and How (2002), Becker and Packard 
(1994). Moreover, the study of LPV systems provides additional insights into 
some longstanding and sophisticated problems in robust adaptive control (see 
Athans et al, 2005), switching control systems (see Hespanha et al, 2003) and in 
intelligent control (see Feng and Ma, 2001, Ravindranathan and Leitch, 1999). 
The appearance of Lyapunov-based stability criteria in the form of LMIs made a 
significant improvement. From this point on, stability questions were formulated 
in a new representation, and the feasibility of Lyapunov-based criteria was 
reinterpreted as a convex optimization problem, as well as extended to an 
extensive model class. The pioneers Gahinet, Bokor, Balas, Chilai, Boyd, and 
Apkarian were responsible for establishing this new concept. Soon, it was also 
proved that this new representation could be used for the formulation of different 
control performances beyond the stability issues together with the optimization 
problem. Ever since, the number of papers about LMIs are increasing drastically 
in various topics such as optimal LQ control, robust H∞ control/H∞ synthesis, μ-
analysis, quadratic stability, Lyapunov-based stability, multi-model and multi-
objective state-feedback control of parameter-dependent systems, control of 
stochastic systems. Boyd's paper states that it is true of a wide class of control 
problems that if the problem is formulated in the form of LMIs, then the problem 
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is practically solved. In parallel, efficient numerical mathematical methods and 
algorithms were developed for solving convex optimization problems—thus LMIs 
(Nesterov and Nemirovski). As a result, with the usage of numerical methods of 
convex optimization we consider a large set of problems that require the resolution 
of a large number of convex algebraic Ricatti-equations solved today, in spite of 
the fact that the result of the obtained solution is not a closed (in its classical 
sense) analytical equation. 

1.1.2 System Modeling and Identification Theory 

In the last decade, various new representations of dynamic models have emerged 
in systems theory. The origins of this paradigm shift can be linked with the 
famous speech given by Hilbert in Paris, in 1900. Hilbert listed 23 conjectures, 
hypotheses, concerning unsolved problems which he believed would prove to be 
the biggest challenge in the 20th Century. According to Hilbert's 13th conjecture, 
there exist continuous multi-variable functions which cannot be decomposed as 
the finite superposition of continuous functions of a smaller number of variables. 
In 1957, Arnold disproved this hypothesis. Moreover, in the same year, 
Kolmogorov formulated a general representation theorem, along with a 
constructive proof, which allows for a decomposition into one-dimensional 
functions (see also Sprecher and Lorentz). This proof justified the existence of 
‘universal approximators’. Based on these results, starting from the 1980s, it has 
been proved that universal approximators exist within the categories defined by 
approximation tools such as biologically inspired neural networks and genetic 
algorithms, as well as fuzzy logic. As a result, these approximators have appeared 
in the identification models of systems theory, and turned out to be effective tools 
even for systems that can hardly be described in an analytical way. 

As a result of the above, we have various effective identification techniques today. 
However, the identified models obtained as a result of these alternative techniques 
are described in forms that are quite far form the models given by analytical 
closed formulas derived via physical considerations engendered by the system 
under scrutiny. 

1.1.3 Tensor Algebra 

During the last 150 years several mathematicians (Beltrami, Jordan, Sylvester, 
Schmidt and Weyl, to name a few) were responsible for establishing the 
foundations of the Singular Value Decomposition (SVD) and for developing its 
theory, which is one of the most fruitful developments in linear algebra. A very 
recent result is the Higher-Order generation of the SVD (HOSVD) to tensors 
(Lathauwer, 2000, SIAM journal). The Workshop on Tensor Decompositions and 
Applications held in Luminy, Marseille, France, 2005 was the first event where 
the key topic was HOSVD. Its very unique power comes from the fact that it can 
decompose a given N-dimensional tensor into a full orthonormal system in a 
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special ordering of higher order singular values, expressing the rank properties of 
the tensor in the order of L2-norm. In effect, the HOSVD is capable of extracting 
the very clear and unique structure underlying the given tensor. 

1.1.4 TP Model Transformation 

We can conclude that on the one hand we have powerful optimization and control 
design techniques for polytopic and affine forms of LPV models, and on the other 
hand we have a large variety of identification techniques. However, we can hardly 
link these two aspects because of the lack of a uniform representation. Therefore, 
there is a great demand for automatic and uniform ways to convert various 
alternative representations into a unique polytopic or affine form. 

The TP model transformation was proposed as a possible solution. It is capable of 
transforming given LPV models into proper polytopic forms, upon which LMI-
based design techniques are immediately executable. The result of the TP model 
transformation is a TP model that belongs to the class of polytopic models, where 
the parameter-dependent weighting of the vertex systems are one-dimensional 
functions of the elements of the parameter vector. This form offers a relatively 
simple way to describe various convex hull generations in terms of matrix 
operations. 

2 TP Tool – MATLAB Toolbox for TP Model 
Transformation 

TP Tool is a MATLAB Toolbox that implements the Tensor Product Model 
Transformation based Control Design framework. In the following sections we 
provide a brief introduction to its usage, for more details we refer to the homepage 
of the toolbox [1]. 

2.1 HOSVD-based Canonical Form of an LPV Model 

This simple example shows how to obtain the higher order singular value 
decomposition (HOSVD) based canonical form of a linear parameter-varying 
(LPV) model. (This example is also included in the downloadable source files of 
the toolbox) 

Consider the following LPV model: 

)())(()( ttt xxSx =& , (1) 

where 
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Our goal is to determine the HOSVD based canonical form (in the closed 
hypercube of the parameter space) by the TP model transformation: 
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where the weighting functions and the LTI systems define the invariant 
characteristics of the given LPV model, see the definition of the HOSVD based 
canonical form. 

2.1.1 Implementation in MATLAB with the TP Toolbox 

First we define the parameter domain and grid size (I, J). 
% intervals 
Omega = [-0.5 0.5; -0.5 0.5]; 
% grid 
M = [20, 20]; 

so both x_1 and x_2 are in the [-0.5, 0.5] interval and we will sample these 
intervals over a 20x20 grid. 

Now we have to provide the LPV model of our system as a cell array of functions. 
In this case we can use MATLAB's anonymous function handles to describe the 
system easily. (Note that these functions can be the result of complex algorithms 
or calculated from measurement data.) 

LPV = {... 
 @(p)2*cos(4*p), @(p)p; 
 @()3,           @(p)p(2)^3*sin(p(1)); 
}; 

We use dep 3 dimensional matrix to have to tell the toolbox what are the function 
arguments for each element of the LPV matrix. 

% LPV{i,j} will be called with x(dep(i,j)==1) argumentum 
dep = zeros([size(LPV) 2]); 
dep(1,1,:) = [1 0]; 
dep(1,2,:) = [0 1]; 
dep(2,2,:) = [1 1]; 

We can simply execute the TP model transformation to get the LTI systems (S) 
and the discretized weighting functions (U). (the last parameter is the weighting 
function type, 'canonic' means canonical form here) 

[S, U] = tptrans(LPV, dep, M, Omega, 'canonic'); 

We can numerically check (over thousands of random points) the difference 
between the original model and the numerically reconstructed HOSVD based 
canonical form. 
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[maxerr, meanerr] = tperror(2000, S, U, LPV, dep, M, Omega); 
disp('max error:'); disp(maxerr(2)); 
disp('mean error:'); disp(meanerr(2)); 

Conclusion: the maximum error and the root mean square error over 2000 random 
points is in the range 10e-15 which is caused by the numerical computation. Thus 
we can conclude that the two models are equivalent (numerically) in the present 
example. 

Let us see the univariate othonormed functions for each parameter 
plotw(U, M, Omega, {'x1', 'weights'; 'x2', 'weights'}); 

 

2.2 Convex TP Model Form 

Let us consider the same system as in the previous example. Now our goal is to 
generate convex tp model form. (For instance for LMI based analysis and design.) 

Since the TP model form is not unique, thus the toolbox contains various methods 
to adjust the shape of the resulting convex weight functions (we refer to papers 
listed under ’Different types of convex hulls’ in the publication list).  

The only difference in the code from the previous example is the wtype parameter 
in the tptrans function call. The possible values of the wtype parameter and its 
meaning can be found in the documentation also see the publications about the 
different types of convex hulls. 

2.2.1 Implementation in MATLAB with the TP Toolbox 

Specifying the model 
% intervals 
Omega = [-0.5 0.5; -0.5 0.5]; 
% grid 
M = [20, 20]; 
 
% LPV model and parameter dependencies 
LPV = {... 
 @(p)2*cos(4*p), @(p)p; 
 @()3,           @(p)p(2)^3*sin(p(1)); 
}; 
dep = zeros([size(LPV) 2]); 
dep(1,1,:) = [1 0]; 
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dep(1,2,:) = [0 1]; 
dep(2,2,:) = [1 1]; 

TP model transformation with different weight function types. 
% wtype can be 'canonic', 'snnn', 'irno', 'cno' 
[S, U] = tptrans(LPV, dep, M, Omega, wtype); 
 
% numerical error check 
[maxerr, meanerr] = tperror(2000, S, U, LPV, dep, M, Omega); 
disp('max error:'); disp(maxerr(2)); 
disp('mean error:'); disp(meanerr(2)); 
 
% plotting the weighting functions 
plotw(U, M, Omega, {'x1', 'weights'; 'x2', 'weights'}); 

2.2.2 Different Type of Weighting Functions 
wtype = 'snnn'; 

 
wtype = 'irno'; 

  
wtype = 'cno'; 
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2.3 Stabilization of a TORA System (a Fourth Order 
Benchmark Problem) 

For detailed derivation of this example with controller and observer design see [1], 
[6], [17]. 

Consider the control of a Translational Oscillations with an Eccentric Rotational 
Proof Mass Actuator (TORA) system, which was originally studied as a simplified 
model of a dual-spin spacecraft with mass imbalance to investigate the resonance 
capture phenomenon. 

 
The system model can be written in the following form: 

)())(()())(),(()( 343 tutxgttxtxft += xx& , (4) 
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We use TP model transformation to yield convex TP model (CNO type) 
representation of the model, then we apply LMI design on the resulting TP model 
to derive a controller. 
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2.3.1 Controller Design 

Model specification: 
% Model constants 
epsilon = 0.2; 
 
% LPV model 
LPV = {... 
    @()0     @()1     @()0     @()0     @()0;  
    @(x)-1/(1-epsilon^2*cos(x)^2)  @()0     @()0 
      @(x)(epsilon*x(2)*sin(x(1)))/(1-epsilon^2*cos(x(1))^2) 
      @(x)(-epsilon*cos(x))/(1-epsilon^2*cos(x)^2); 
    @()0     @()0     @()0     @()1     @()0; 
      @(x)(epsilon*cos(x))/(1-epsilon^2*cos(x)^2) @()0 @()0 
      @(x)(-x(2)*epsilon^2*cos(x(1))*sin(x(1)))/(1-
epsilon^2*cos(x(1))^2)  
      @(x)1/(1-epsilon^2*cos(x)^2); 
    @()0     @()0     @()1     @()0     @()0;  
    @()0     @()0     @()0     @()1     @()0;  
}; 
 
% parameter dependencies 
dep = zeros([size(LPV) 2]); 
dep(2,1,:) = [1 0]; 
dep(2,4,:) = [1 1]; 
dep(2,5,:) = [1 0]; 
dep(4,1,:) = [1 0]; 
dep(4,4,:) = [1 1]; 
dep(4,5,:) = [1 0]; 

TP model transformation: 
filename='tora_data'; 
A_size = 4; 
 
% intervals 
Omega = [-45/180*pi 45/180*pi; -45/180*pi 45/180*pi]; 
% grid size 
Mgrid = [137, 137]; 
% weight function type: 'cno', 'snnn', 'canonic' 
wtype = {'cno' 'cno'}; 
 
% TP model transformation 
reply = input('TP model transformation? Y/N [Y]: ', 's'); 
if isempty(reply) || lower(reply)=='y' 
 disp('Step 1: Sampling the LPV model'); 
 tic 
 [S, U] = tptrans(LPV, dep, Mgrid, Omega, wtype, 1); 
 toc 
 disp('L_2 norm and mean square error'); 
 [maxerr, meanerr] = tperror(100, S, U, LPV, dep, Mgrid, 
Omega); 
 disp(maxerr); 
 disp(meanerr); 
 
 save(filename, 'S', 'U', 'Omega', 'Mgrid'); 
else 
 load(filename, 'S', 'U'); 
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end 
 
% Plotting 
reply = input('Draw weight functions? Y/N [Y]: ', 's'); 
if isempty(reply) || lower(reply)=='y' 
    labels{1,1}='Angular position: x_3 (rad)'; 
    labels{1,2}='Weighting functions'; 
    labels{2,1}='Angular speed: x_4 (rad/sec)'; 
    labels{2,2}='Weighting functions'; 
 plotw(U, Mgrid, Omega, labels); 
end 
 
reply = input('Print TP model? Y/N [Y]: ', 's'); 
if isempty(reply) || lower(reply)=='y' 
    printtp(S); 
end 

Controller design (constrains (input and state) and asymptotic stabilization, for 
details about including further constrains and decay rate control design in this 
example we refer to publications): 

reply = input('PDC controller design? Y/N [Y]: ', 's'); 
if isempty(reply) || lower(reply)=='y' 
    mu = 17450; 
    phi = 1.1; 
 
    K = lmi_asymptotic_const(S, A_size, mu, phi); 
    save(filename, '-APPEND', 'K'); 
end 
 
reply = input('Print TP controller? Y/N [Y]: ', 's'); 
if isempty(reply) || lower(reply)=='y' 
    printtp(K); 
end 

Resulting CNO type weighting functions of the convex TP model: (For further 
different types of weighting functions of this example we refer to publications.) 

 
Simulation results: 

 



Magyar Kutatók 8. Nemzetközi Szimpóziuma 
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 493 

Further Information 

For the latest version of the toolbox and for further information see the homepage 
of the toolbox [1]. 
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