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Abstract: The concept of fuzzy signatures might be useful when modeling complex, well 
structured problems, where one or several components of the structure are determined at a 
higher level by a sub-tree of other components. The data set belonging to the problem has 
an arbitrary structure, from which the structure of the data may slightly differ. An 
aggregation operator is given for each node, for the purpose of modifying the structure, so 
that data with missing components can be evaluated. Deducing a conclusion from an 
observation having such a structure is a key issue. In this paper fuzzy signature based rule 
bases will be introduced, then the generalisation of the well known Mamdani method for 
signature based rules will be shown step-by-step. Finally, an example of inference on fuzzy 
signatures will be discussed. 
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1 Fuzzy Signatures 

In 1967 Goguen introduced L-fuzzy sets [1] as the generalisation of the original 
concept of fuzzy sets introduced by Zadeh [2] in 1965. L-fuzzy membership 
grades are elements of an arbitrary lattice L: 

XxLxA ∈∀→ ,:       (1) 

In 1980 Kóczy introduced vector valued fuzzy sets [3], which are special L-fuzzy 
sets, where L is the lattice of n-dimensional fuzzy vectors, nL ]1,0[=  in (1). 

Vector valued fuzzy sets assign to each element of X a set of quantitative features 
rather than a single degree, this way providing additional information about the 
specific element. 
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Fuzzy signatures [4] are a generalised form of vector valued fuzzy sets, where 
each vector component is possibly another nested vector. This generalisation can 
be continued recursively to any finite depth, thus forming a signature with depth 
m. 
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The structure of fuzzy signatures can be represented both in vector form and also 
in a tree structure. Let us consider a simple example. 

The basic structural vector is: 
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The vector form of the structure is:
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The tree structure of the same signature can be seen in Figure 1. 

Fuzzy signatures can be considered as special, multidimensional fuzzy data, where 
some of the components are interrelated in the sense that a sub-group of variables 
determines a feature on a higher level. This way, complex and interdependent data 
components can be described and evaluated in a compact way. The big advantage 
of fuzzy signatures is, that they can deal with situations, where some of the data 
components are not known. 
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Figure 1 

The tree structure of an example fuzzy signature 

1.1 Fuzzy Signature Sets 

The structure of fuzzy signature sets is similar to that of variable fuzzy signatures. 
The only difference is that instead of storing fuzzy variables on the leaves of the 
structure, a membership function is present on each leaf (see Figure 2). 

 
Figure 2 

The tree structure of an example fuzzy signature set 

1.2 Aggregation on Fuzzy Signatures 

As the structure of fuzzy signatures may vary from observation to observation, 
some kind of structure modifying operation is essential, so that these differently 
structured signatures may be compared. 

Aggregation operations result in a single fuzzy value from a set of other fuzzy 
values and have to satisfy a set of axioms. Maximum, minimum and arithmetic 
mean are the most common operators. It is possible to transform fuzzy signature 
structures in the following way: the fuzzy value of a parent node can be obtained 
by aggregating the values of its children (or in more general form, the value of its 
sub-tree) with a suitable aggregation operator, thus reducing the depth of the 
structure. 
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Finding the relevant aggregation operator for each node in the structure is a very 
important problem of fuzzy signatures, because the capability of modifying the 
structure is a key issue when comparing different signatures. Additional expert 
knowledge can be taken into account by introducing weights (from the [0,1] 
interval) for every node in the structure. 

The most general form of aggregation operators is the Weighted Relevance 
Aggregation Operator (WRAO) introduced in [6]. The values and weights 
belonging to each child l in the sub-tree are denoted by xl and wl respectively. The 
definition of the WRAO is as follows: 
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where p is the aggregation factor of the above function. )0,( ≠ℜ∈ pp  

Some of the well-known aggregation operators are special cases of WRAO 
depending on the value of p. 

−∞→p , WRAO→  minimum 

1−=p ,  WRAO=  harmonic mean 

0→p ,  WRAO→  geometric mean 

1=p ,  WRAO=  arithmetic mean 

∞→p ,  WRAO→  maximum 

2 Fuzzy Signatures in Rule Bases 

The general form of fuzzy rule bases is as follows: 

 R1 : If x is A1 then y is B1 

 R2 : If x is A2 then y is B2 

 … 

 Rr : If x is Ar then y is Br 

where Ai are multidimensional fuzzy sets and Bi are fuzzy sets. 

The above rule base can be extended to function on fuzzy signatures by the 
generalisation of the rules. 

In the antecedent part of the rules, Ai can either be fuzzy signature sets or simply 
fuzzy variable signatures, where the fundamental structures of the signatures are 
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similar and the corresponding aggregation operators are uniform for each rule. For 
fuzzy signature sets, the domain of the fuzzy sets on the leaves of the structure is 
[0,1]. The consequents of the rules remain fuzzy sets. 

Observation A' is either a fuzzy signature singleton or a fuzzy signature set (over 
the domain [0,1]). The structure of the observation does not necessarily 
correspond exactly to the fundamental structure of the rules, but often it can be 
obtained by removing some sub-trees or leaves. This indicates that some 
information might be missing from the observation. 

Signature A' is obtained from the original fuzzy singleton or fuzzy set observations 
by normalising the domains on each leaf of the signature. 

2.1 Mamdani Inference in Fuzzy Signature Based Rule Bases 

A slightly modified version of the algorithm introduced by Mamdani in 1975 [7] 
is proposed here, which will work on rule bases with fuzzy signatures, as well. 

2.1.1 Calculating the Degree of Matching for Every Rule 

 
Figure 3 

A whole sub-tree is missing from the observation 
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1 Finding the common structure: 

The signatures Ai and A' have to be reduced to their maximal common sub-tree. 

a) If a whole sub-tree is missing in the structure of the observation compared to 
the structure in the rule antecedent, then that sub-tree is reduced to its root by 
aggregation. The structures can be seen in Figure 3. 

In the rule's new structure the fuzzy set (or variable) at the leaf marked x22 is 
calculated by aggregating the fuzzy sets (or variables) that originally where on the 
leaves x221, x222 and x223:  

),,(@ 2232222212222 xxxx =        (4) 

b) In the case that only a few children of a node are missing from the observed 
tree structure, then the maximal common sub-tree of the rule’s and the 
observation’s signature has to be determined. At this point, the signature of the 
antecedent and the signature of the observation both have to be reduced to the 
common structure using the aggregation operators defined for the rule base. 

The first step in reducing the antecedent of the rule and the observation to the 
common structure shown in Figure 4 is reducing the sub-tree belonging to x22 as 
shown in equation (4). 

 
Figure 4 

Two values (from nodes x23 and x221) are misssing from the observation 
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The fuzzy set (or fuzzy value) calculated for the node x22 is then taken into 
account at the next level, when x2 is calculated: 

),,(@ 23222122 xxxx =  in the case of the rule antecedent, and 

),(@ 222122 xxx =  in the case of the observation. 

In the aggregation, missing data is treated as though its weight in the WRAO was 
0. 

Let Ai
(r) and A'(r) be signatures of the rule antecedent and the observation 

respectively, after the reduction of the signatures to their common structure. 

2 Constructing the signature representing the degree of matching: 

For each leaf l of the signature structure, the degree of matching between the 
fuzzy set (or value) found on the equivalent leaf of the rule antecedent and the 
observation has to be calculated by applying the formula used in the Mamdani 
method: 

)))(),('max(min()( )()( lAlAlM r
i

r
i =       (5) 

where S(l) denotes the fuzzy set (or value) found on leaf l of the signature S. Mi is 
the signature representing the degree of matching between rule i and the 
observation. 

3 Calculating the degree of matching for rule i: 

The degree of matching for rule i is obained by reducing the previously computed 
fuzzy signature Mi to its root using the aggregation operators belonging to the rule 
base. The result of the aggregation is a fuzzy value representing the degree of 
matching of rule i and the observation, which is denoted by wi. 

The above process is repeated for all rules i (i=1,…,r), so that all the degrees of 
matching (w1,…,wr) are produced. 

2.1.2 Inference Engine 

From this point onwards, inference for fuzzy signature based rule bases does not 
differ from inference on original, fuzzy set rule bases. 

First, the truncated output fuzzy set Bi
* is calculated for each rule i as: 

))(,(min)(* ywy
ii

BiB
μμ =        (6) 

The conclusion fuzzy set B' is calculated from the truncated fuzzy sets as: 
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2.1.3 Defuzzification 

To calculate a crisp result from the obtained fuzzy set B' representing the 
observation, one of many defuzzification methods known from literature can be 
used. 

3 Example of Fuzzy Signature Based Inference 

Let the antecedents of the rules in the rule base be fuzzy signature sets, where the 
membership functions of the fuzzy sets on the leaves of the structure are chosen 
from sets A, B, C, D ,E (of Figure 5). 

 
Figure 5 

Example fuzzy sets for use in rule antecedents 

The membership function of the consequent fuzzy set of each rule is either F or G 
(of Figure 6). 

 
Figure 6 

Example fuzzy sets for use in rule consequents 

3.1 The Structure 

The fundamental structure of the fuzzy signatures involved in the example is the 
structure seen in Figure 1. 
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3.2 The Aggregation Operators 

Let us define the aggregation operators @i which generate the fuzzy set (or value) 
assigned to nodes xi from the fuzzy sets (or values) assigned to their immediate 
children (xi1 and xi2 (and xi3 if needed)). Recursively, the fuzzy set (or value) on 
node x22 can be aggregated from the values of its children: x221, x222 and x223. 

The value of the root x also has to be obtained (at least for aggregating the 
signature representing the degree of matching), so an aggregation operator @ is 
needed at this level, that generates the value of x from the value of its children: x1, 
x2, x3 and x4. 

The formulae: 
 ).,,@( 4321 xxxxx =  
 ),(@ 121111 xxx =  
 ),,(@ 23222122 xxxx =  
 ),,(@ 2232222212222 xxxx =      (8) 
 ),(@ 323133 xxx =  

In the example the following operators are used: @ , @1 and @2 are the arithmetic 
mean, @22 the minimum and @3 the maximum. These are all special cases of 
WRAO, where all the weights are 1. 

3.3 Aggregation on Fuzzy Sets 

When aggregating fuzzy sets, the membership values for each element x of X (in 
this case x ∈  [0,1]) are calculated for all the fuzzy sets which are subject to the 
aggregation. The original aggregation operator is then used on these membership 
values, to obtain the aggregated value belonging to x. The membership function of 
the aggregated fuzzy set is: 

{ })(,),(),(@)(]1,0[
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kAAAAg
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   (9) 

In the example below let the fuzzy sets A1 and A2 have membership functions C 
and D seen in Figure 5. The aggregation shown in Figure 7 is the arithmetic mean 
operator. The resulting fuzzy set (denoted by H) is marked with a broken line. 
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Figure 7 

Aggregation of fuzzy sets C and D with the arithmetic mean operator 

3.4 The Rules 

The rule base contains rules with differently structured fuzzy signatures. Let the 
vector form of rule j be the following: 

Rj : If x is [ ] [ ] [ ][ ]TDBEBACCD  then y is F 

3.5 The Inference 

The process of inference is shown for the following fuzzy signature observation: 

[ ][ ] [ ][ ]Tx 75.06.095.035.05.065.025.045.04.0'=  

3.5.1 Calculating the Degree of Matching Between the Rule Antecedent 
and the Observation  

1) Finding the common structure is shown in Figure 8. 

The new structure of the fuzzy signature set in the rule is obtained by aggregating 
fuzzy sets C and D so that a new fuzzy set is obtained for leaf x1. The aggregation 
operator used is that of leaf x1 (arithmetic mean). This aggregation was shown in 
Figure 7. 

The new fuzzy signature set in the rule is: [ ] [ ][ ]TDBEBACH  

The new structure of the fuzzy signature in the observation is obtained by 
aggregating the fuzzy values of the sub-tree belonging to x22 (with the aggregation 
operator @22). The new value on node x22 is: 25.0)5.0,65.0,25.0(min =   

The new signature of the observation is: 

[ ] [ ][ ]T75.06.095.035.025.045.04.0  
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Figure 8 

The common structure of the rule and the signature 

2) Constructing the signature representing the degree of matching 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

75.0
0
5.0

75.0
25.0
75.0
25.0

)75.0(
)6.0(
)95.0(

)35.0(
)25.0(
)45.0(

)4.0(

D

B

E

B

A

C

H

jM

μ
μ
μ

μ
μ
μ
μ

 

3) Calculating the degree of matching for rule j. 

The signature Mj has to be aggregated to its root. The values assigned to nodes xi 
are:  

58.03/)75.025.075.0(),,(@ 23222122 =++== xxxx  

5.0)0,5.0(max),(@ 323133 === xxx  

The degree of matching for rule j is: 

52.04/)75.05.058.025.0(4/)(),,,@( 43214321 =+++=+++== xxxxxxxxwj
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3.5.2 Inference Engine 

The fuzzy set F (the consequent of rule j) is ‘truncated’ by wj. 

These steps are performed similarly for all the other rules in the rule base, keeping 
in mind that the signature structures in the antecedents of the rules may differ from 
the one shown in this example. 

When fuzzy sets Bj
*are calculated for every rule j, the conclusion is obtained in the 

same way as with classical fuzzy rule bases. 

If necessary, defuzzification methods are applied on the concluded fuzzy set in 
order to obtain a crisp conclusion. 

Conclusions 

In this paper a brief overview of fuzzy signatures along with their main 
advantages was given. After this, rule bases containing fuzzy signatures were 
presented and the idea of Mamdani type systems based on fuzzy signatures were 
introduced. These could be useful for large data sets, where data can be modeled 
with fuzzy signatures, because conclusions can be drawn from observed data 
available in signature form. In the future, various methods for automatically 
extracting rules from available data to form fuzzy signature based rule bases will 
be examined. 
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