
Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 527

Object-Oriented Identifier Renaming
Correction in Three-Way Merge

László Angyal, László Lengyel, Hassan Charaf
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
{angyal, lengyel, hassan}@aut.bme.hu

Abstract: There are two traditional concurrency models among the source code
management (SCM) systems: lock and merge models. The lock model prevents the
concurrent modification on the same files, but the merge model allows the parallel editing,
and performs a merge to reconcile the changes. A three-way merge engine is a usual part
of SCM systems, some of them attempt to auto-merge the files, but sometimes they fail due
to textual-based approaches or semantic conflicts. The merge should produce syntactically
correct source files, but semantic correctness cannot be ensured trivially. The best methods
treat modifications as semantic changes in high abstraction level, rather than atomic
changes. The atomic changes do not reflect the intentions of the developers, therefore
discovering those intentions can significantly improve semantic merge approaches. This
paper introduces that matching the corresponding identifiers e.g. class, field, method, local
variables in the ASTs of the revisions, and detection of renaming takes closer to semantic
correctness. Renaming of an identifier can cause semantic errors in the output of the
merge. This issue is examined and a solution is elaborated in this work.

Keywords: Three-way Merge, SCM, Refactoring, Renaming Identifiers, Semantic Errors

1 Introduction

Refactoring [1] means restructuring the code of an object-oriented system without
modifying its run-time behaviour. Refactorings are composite changes in higher
abstraction level. In contrast to simple low-level atomic changes, they aim the goal
to improve several characteristics of the software source code e.g.
understandability, maintainability. For instance, renaming an identifier to a better
name helps the understability, while the renaming activity causes numerous
atomic changes in the code.

Refactorings affect many nodes of the abstract syntax tree (AST). Changes are
reconciled by detecting the changed nodes and edit operations are constructed that
can propagate those changes to the other side. The typical merge engines handle

L. Angyal et al.
Object-Oriented Identifier Renaming Correction in Three-Way Merge

 528

the composite changes as set of independent atomic changes. This makes them
unfeasible for merging files after refactoring.

The granularity of the merge means the size of the smallest indivisible changes
that can be propagated. Obviously, the fine-grained methods have slower
execution time over coarse-grained ones, but better conflict resolution can be
achived by a fine-grained merge. For example, a line-based textual approach
detects even the smallest change as the line changed. More changes within the
same line became invisible and source of further merge conflicts. Usually, there
are relations among the independent changes, which involves some semantic
meanings as well. These relations should be considered while merging revisions of
files.

AST-based merge approaches are more suitable for source code differencing and
merging, because they always produce syntactically correct output contrary to
line-based textual approaches e.g. diff, but semantic correctness is not ensured at
all. An AST-based merge is language dependent and works with lower
performance, therefore, it is rarely used in general versioning systems.

Main branch

Mickey’s branch

Mallory’s branch

Check-in
(synchronization)

Mickey’s branch

Mallory’s branch

Check-out Check-in
(synchronization)

Check-out

Figure 1

Developoing process of the running example

Assume the evolution of a software, which is developed by two users, Mickey and
Mallory. They use a versioning system that supports the merge concurrency
model. The whole process of development can be followed in Figure 1. After
checking-out the files and both of them can modify the same files. Mickey
renames a class without telling Malory to do the same. Mallory uses a reference to
that class in her inserted lines. After a successfull merge performed by the
versioning system, they found that the merged file contains some semantic errors.
The inserted class references were not corrected with the new name of that class.
This paper discusses a solution for these problems.

The remainder of the paper is organized as follows. We discuss the semantic
conflict related to identifier renaming in Section 2. A solution for that problem is
described in Section 3. This is followed by the introduction of the existing
approaches and tools, and finally conclusions and future work are elaborated.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 529

2 Problem Statement
Assume a situation, where the developers checked-out a source file to modify
independently at the same time. The used SCM system performs an AST-based
three-way merge after file check-ins. Figure 2 depicts the original file and both
modified revisions by Mickey and Mallory as well. This compares the revisions to
the original file, to detect changes. The difference analysis of the files produces
the following differences as atomic edit operations.

Table 1
Mickey’s version contains some updates

OP Name Type of the AST node Name of the parent node New value
UPD Widget TypeDeclaration Global_Types Control
UPD Label TypeDeclaration Global_Types StaticText
UPD g ParameterDeclarationExpression Paint_Parameters graph
UPD str VariableDeclarationStatement CodeStatementCollection value
UPD str VariableReferenceExpression Assign: "str=label" value
UPD str VariableReferenceExpression return str value
UPD g VariableReferenceExpression DrawString graph

There are relations among the identified edit operations (Table 1): (i) parameter
declaration of g was changed to graph, and consequently, the reference to g also
changed to graph, (ii) local variable str was changed to value and their
corresponding references as well. From the high abstraction level semantical point
of view these are two composite changes, not an ordered list of independent
atomic changes.

Mallory has not updated anything (Table 2), but she has inserted new class Button
and reused the existing interface Widget and the class Label. She changed an
expression with a previously declared local variable str.

Table 2
Mallory’s version contains inserts

OP Name Type of the AST node Index Name of the parent
INS Button TypeDeclaration 2 Global_Types
INS label_0_Label MemberField 0 Button
INS Paint_Public_Graphics MemberMethod 1 Button
INS Add BinaryOperatorExpression 0 return
INS Add BinaryOperatorExpression 0 Add (left side)
INS “[“ PrimitiveExpression 0 Add (left side)
INS “]“ PrimitiveExpression 1 Add (right side)
MO
V

str VariableReferenceExpr 1 Add (right side)

…

L. Angyal et al.
Object-Oriented Identifier Renaming Correction in Three-Way Merge

 530

using System.Drawing;

public interface Widget {
 void Paint(Graphics g);
 void SetLocation(Point p);
 void SetSize(Size s);
}

public class Label : Widget {

 string label;
 Point location;
 Size size;

 public void Paint(Graphics g) {
 g.DrawString(this.label, this.location);
 }

 public void SetLocation(Point p) {
 this.location = p;
 }

 …

 public override string ToString() {
 string str;
 str = this.label;
 return str;
 }
}

 Original file

 Mickey’s revision Mallory’s revision
using System.Drawing;

public interface Control {
 …
}

public class StaticText : Control {
 …
 public void Paint(Graphics
graph) {
 graph.DrawString(…);
 }

 …

 public override string
ToString() {
 string value;
 value = this.label;
 return value;
 }
}

using System.Drawing;

 …

public class Label : Widget {
 …
 public override string
ToString() {
 string str;
 str = this.label;
 return "[" + str + "]";
 }
}

public class Button : Widget {
 Label label;

 public void Paint(Graphics g) {
 g.DrawRectangle(…);
 this.label.Paint(g);
 }
 …
}

Figure 2
Original and modified files

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 531

The merge replays the edit operations without any semantic consideration and
produces the output depicted in Figure 3. The output is still syntactically correct,
but contains several semantic errors, which have to be corrected manually after the
merge.

using System.Drawing;

public interface Control {
 …
}

public class StaticText : Control {

 …

 public override string ToString() {
 string value;
 value = this.label;
 return ("[" + str + "]");
 }
}

public class Button : Widget {
 Label label;

 public void Paint(Graphics g) {
 g.DrawRectangle(this.location, this.size);
 this.label.Paint(g);
 }
 …
}

Figure 3
Merged version with some semantic errors

The variable str has been renamed to value, class Label was renamed to StaticText
and interface Widget to Control according to the edit operations. However, the
newly inserted reference to str remained str and the class Button tries to
implement the already renamed interface Widget. A merge relies only on the
detected edit operations and replays them without sense, this can easily produce
compile time errors. The merge should correct the errors by detecting the renames
and applying the new names in the newly inserted references.

3 The Renaming-Aware Extension Approach
The purpose of this approach is to extend a three-way merge approach with the
ability to be renaming-aware. When reconciling two source files, while renaming
was performed in one of them, then the newly inserted references with the old
identifier names have to be renamed as well, in order to ensure the semantic
correctness. Previous section has showed that merge engines should take the
identifier renaming into account and this section proposes a solution, that is
illustrated via .NET AST i.e. CodeDOM [2] nodes.

L. Angyal et al.
Object-Oriented Identifier Renaming Correction in Three-Way Merge

 532

The two main points of our approach are,

(i) discovering the identifier dependencies and building a lookup table
of the identifier declarations and the corresponding references with
fully qualified names,

(ii) while executing edit operations, the identifier dependencies are taken
into account.

Before describing point (i), we are looking closer at the different types of
identifier declaration nodes and their dependencies.

Table 3
Local variable declaration nodes

Declaration node Place of the declaration References node
VariableDeclaration in method bodies with unique name VariableReferenceExpression
ParameterVariable-
Declaration

In method signatures: method
parameter block

VariableReferenceExpression

The union of the visibility scope of local variables with the same name is
prohibited within a method body, and a variable (Table 3) with the name of a
parameter variable in the method signature cannot be declared, since Java or C#
compilers report error. A global lookup table with fully qualified variable names is
enough, because the full name comprises the namespace, the name of the class, the
method that contains that local declaration and finally, the variable name, and the
order of its declaration if there are more variables with the same name within a
method. In Table 4 we summarize the identifiers with global visibility beside
some possible reference nodes that are offered by CodeDOM.

Table 4
Identifiers with global visibility

Declaration node References nodes
Namespace In fully qualified TypeReference or VariableReferenceExpression
Class/Structure:
TypeDeclaration

Baseclass in class declaration (TypeReferenceExpression)
Static method invocation (VariableReferenceExpression)
Static field reference (VariableReferenceExpression)
Field type (TypeReference)
Variable type (TypeReference)
Object creation (ObjectCreateExpression)
Array type (ArrayCreateExpression)
Casting (CastExpression)
Generics (TypeReference)

MemberField FieldReferenceExpression
MemberMethod Method invocation (MethodReferenceExpression)
MemberEvent EventReferenceExpression
MemberProperty PropertyReferenceExpression

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 533

Figure 4 illustrates the partial AST of the running example with its lookup table,
and the relations between the nodes and the rows in the table. The symbol lookup
table contains the identifiers with their fully qualified names. The lookup table can
be built by visiting the AST nodes of the parsed code.

Global namespace

Global.Widget (interface)

Global.Label (class)

Global.Paint.g (paramvariable)

Global.ToString.str (variable)

Widget Label

Paint ToString

Parameters MethodBody

MethodInv

VarRef

Assign

FieldRefVarRef

MethodBody

MethodReturn

VarRef

VarDeclParamDecl

ThisRef
Figure 4

Partial AST of the original version of the code in the running example and its identifier lookup table

According to point (ii), identifier dependencies are considered while doing the
merge. We distinguish between two kinds of operation: (a) insert a new node and
(b) update an existing node.

First of all, we need a mapping between the lookup tables of the different ASTs.
The common of these different tables is that, the differencing of the two ASTs
matches the corresponding nodes in different trees. For instance, in Figure 4
variable declaration node str is matched with variable declaration node value in
Figure 5, thus, even if their fully qualified name is different, there is a mapping
between these nodes.

L. Angyal et al.
Object-Oriented Identifier Renaming Correction in Three-Way Merge

 534

Global namespace

Global.Control (interface)

Global.StaticText (class)

Global.Paint.graph (paramvar)

Global.ToString.value (variable)

Control StaticText

Paint ToString

Parameters MethodBody

MethodInv

VarRef

Assign

FieldRefVarRef

MethodBody

MethodReturn

VarRef

VarDeclParamDecl

ThisRefGlobal.Control (interface)

Global.StaticText (class)

Global.Paint.graph (paramvar)

Global.ToString.value (variable)

Global.Widget (interface)

Global.Label (class)

Global.Paint.g (paramvariable)

Global.ToString.str (variable)

Original version Modified version
Figure 5

Mickey’s version and the mapping between lookup tables

In case (a), when inserting a new reference node, the dependency table should be
looked at. If the reference name differs from its declaration name, then the
reference name that is going to be inserted must be changed to that name. Figure 3
illustrates that a local variable str is inserted without checking its declaration
name, which was meanwhile changed to value, due to Mickey’s work. The
mapping between the tables allows to look up the matching between the
declaration node str and the declaration node value. Along these connections we
can found that the declaration name is different. Therefore, the algorithm should
rename the new variable reference node that is to be inserted, and the new name
has to be value.

In case (b), when updating an indentifier declaration node, the corresponding
references, which store the name of the identifier have to be changed as well.
These reference nodes can be looked-up from the table. For example, if we want
to execute the edit operations from Mickey’s version on Mallory’s file, updating
interface declaration Widget to Control should involve the changing of the class
reference in declaration of Button from Widget to Control.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 535

4 Existing Tools and Approaches

This section introduces some of the most relevant tools and approaches that are
related to our work.

The well-known CVS uses line-based textual merge, Due to its coarse-grained
granularity it detect atomic changes together with their context, for instance,
renaming a variable in an expression indicated as the whole line was changed.
After a successful merge of files that were edited in parallel, syntactic and
semantic errors can remain in the source code. The errors that are revealed in
compile time are better than run-time errors, because they are hidden e.g.
unintended method overrides and can cause the malfunction of the software.

A common characteristic of textual and AST-based differencing is that they detect
a lot of atomic changes without connection between them, abstraction of the
changes should be extracted to guess the intentions of the developer. [3] presented
that identifying the relations of the atomic changes is important to improve the
comprehension of the source code evolution. Small changes can be grouped
together into high-level abstract operations. Other advantage of the abstraction is
that the changes became reusable on other files.

The currently state-of-the-art approaches handle source code changes as semantic
actions because they present more information and reflect the intentions of the
developers. The differencing techniques that detect changes in lines or in ASTs
provide the list of atomic changes e.g. insertion or deletion of a node, but these
changes have no abstract information value. The modern integrated development
environments (IDE) have the ability to log the semantic changes in high
abstraction level and the corresponding low-level details as well. For instance,
Eclipse [4] has a refactoring engine that logs the changes performed by refactoring
actions, if they were done via that engine, like renaming a variable or a class. That
logs can be utilized further during the merge process.

Molhado is a refactoring-aware SCM system, that includes an Eclipse plugin
MolhadoRef [5], which captures and stores the performed refactorings on Java
files. Its underlying data model is flexible and allows representing programs in
any language. It performs only lightweight parsing due to performance reasons,
the method bodies in string format are handled as attributes of methods.
MolhadoRef use the Eclipse built-in differencer engine to perform textual
difference analysis, the changed lines are examined if the changes were caused by
the refactoring operations, if so, they are removed from the change list. After that,
Molhado can perform a textual merge by replaying the recorded refactoring
together with other edit operations in order to propagate changes. Authors of
MolhadoRef got better merge results with less human intervention compared to
CVS.

L. Angyal et al.
Object-Oriented Identifier Renaming Correction in Three-Way Merge

 536

Operation-based approaches can be very precise in recording the changes and
replaying them, but sometimes the log files are unavailable. RefactoringCrawler
[6] is a tool that can reconstruct with good reliability some kinds of applied
refactorings by comparing the original and the modified version of a Java file. It
uses user adjustable parameters to match the method bodies of the classes. Its
matching algorithm is based on an approach that uses fingerprints of the tokenized
method bodies. After matching, it performs semantic analysis.
RefactoringCrawler is limited to examine API interfaces, it does not deal with
local variables and has some shortcomings with fields.

In [7] a tool is presented that detects and reports the name and type changes in
identifiers of different versions of a C program. The purpose of this tool is also to
improve the understanding of software evolution with higher level abstract
information about the name and type changes. It uses a TypeMap for typedefs,
structures and unions, a GlobalNameMap for global variables, and
LocalNameMaps per function bodies to collect the matched identifiers. Types and
functions are matched if they have the same name. The AST traversing within
function bodies is performed by parallel and the local variables are mapped by
their syntactical position.

In our approach, there is AST-based differencing and execution of atomic
operations, but the related identifier declarations and references are connected
together and taken into consideration while applying those detected operations on
the other AST. If any of the related nodes are changed, it should also affect the
others. If the name of a variable is changed in the declaration, we modify every
references that have to be refreshed. If the code that is taken as input is
semantically correct, it does not contain a lonely-changed reference. The
advantage of our method over other object-oriented tools is that we support local
variables.

Conclusions and Future Work

The presented approach takes closer to a semantically correct merge. But, there
are a lot of other semantic related problems that were not addressed, however,
huge number of compile-time errors can be reduced by the presented approach and
it is going toward an automatic merge without human intervention. Our future
work involves the reseach of the solutions to other semantic problems.

The approach can work in merging generated code with hand written code, where
refactorings are not explicitly intended by the developers, but just caused by code
generator, because some parameters were changed. As future work we also plan to
improve the presented approach to create an efficient code generation tool with
round-trip engineering support, that can be used in a designing environment,
which applies bi-directional validated model to source transformations.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 537

Acknowledgement

The fund of ‘Mobile Innovation Centre’ has partly supported the activities
described in this paper.

References

[1] Martin Fowler et al., Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999. ISBN 0201485672

[2] Microsoft’s CodeDOM Web Site, http://msdn2.microsoft.com/en-
us/library/ system.codedom.aspx

[3] Peter Ebraert, Jorge Antonio Vallejos Vargas, Pascal Costanza, Ellen Van
Paesschen, Theo D'Hondt, Change-Oriented Software Engineering, 15th
International Smalltalk Joint Conference, Lugano, Switzerland (To be
published), 2007

[4] Eclipse Web Site, http://www.eclipse.org

[5] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen,
Refactoring-Aware Configuration Management for Object-Oriented
Programs. International Conference on Software Engineering. IEEE
Computer Society, Washington, DC, pp. 427-436

[6] Danny Dig, Can Comertoglu, Darko Marinov, Ralph Johnson, Automated
Detection of refactorings in evolving components, European Conference on
Object-Oriented Programming, Nantes, France, 2006, pp. 404-428

[7] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks, Understanding
source code evolution using abstract syntax tree matching. ACM SIGSOFT
Software Engineering Notes 30(4), July 2005, pp. 1-5

