
Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 551

Calculating Web Service Interaction Using
Extended BPEL Language

Csaba Legány, Márk Kaszó, Tihamér Levendovszky
Budapest University of Technology and Economics, Hungary
legcsabi@aut.bme.hu, mkaszo@aut.bme.hu, tihamer@aut.bme.hu

Abstract: Nowadays web services and SOA (Service Oriented Architecture) systems have
fundamental significance in computer science, especially in platform integration. The most
common consideration is system workload estimation. Interacting composite web services
can be modeled as asynchronously interacting BPEL processes. In order to compute key
system workload parameters in design time – such as service time of a process, response
time or resource cost – the standard BPEL model was extended with new terms and
attributes. This paper formalizes the computation of these parameters using a recursive
algorithm. Finally a numerical example is presented.

Keywords: BPEL, extension, web services, modeling, SOA, XML

1 Introduction

Business Process Execution Language [1] gives us a standard way to specify our
business processes. This paper deals with problem of performance prediction in
SOA systems in design time. BPEL and XML [5] are suitable to describe SOA
systems, but the original version of BPEL is unable to describe performance
parameters. A new BPEL extension is presented in Modeling Extended BPEL
Language [2]. This paper deals with the calculation of system workload
parameters of interacting web services [4] in design time. Key system workload
parameters such as service time, response time and resource cost can be calculated
using the BPEL extension.

The structure of the article is as follows: In Section 2 the key factors of system
workload are calculated using mathematical formalism. There is a complex
numerical example in Section 3. Finally Section 4 summarizes our work.

Cs. Legány et al.
Calculating Web Service Interaction Using Extended BPEL Language

 552

2 Calculations based on BPEL Extension

There are several system workload factors that can be calculated even in design
time using the BPEL extension described in the article Modeling extended BPEL
language [2]. The most important workload characteristics of a system are the
following:

From the aspect of the server [3]:

 Throughput : amount of finished requests/sec

 Resource utilization: measures the usage of resources (CPU, Memory, Disk
IO, Network)

 Service time of a selected process: the time required for a process to finish its
execution and return its return value.

 Resource cost of a selected process: the cost (required memory, IO, CPU) of a
process on a server.

From the aspect of the client:

 Response time: the amount of time required to get response from the server for
a given request. It can be either the time to get the last byte of the server
response (TTLB) or to get the first byte of the response (TTFB). Here we will
calculate in case of TTFB.

2.1 Service Time and Response Time Calculation

Service time is the time required for a process to return its return value. This
section will focus on the calculation of service time using other parameters like
serialization time, link time and data transformation time. For example if a new
user registers on a web site, we can have three processes:

• webP running on the web server

• appP running on the application server

• 1DBP and 2DBP (two sub-processes) running on the database server.

appP can only return if 1DBP and 2DBP have already returned (probably 1DBP and

2DBP can run parallel), webP can only return if appP has already returned. A

graph displaying interacting processes is called as process interaction graph
(Figure 2).

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 553

Let us denote server S of process P with .P S . It means that P runs on S. A
process is P-sending if it sends messages to P, similarly a process is P-receiving if
it receives messages from P. Let us denote messages with M. 1 2(,)M P P stands

for a message sent by process 1P to 2P which has to be serialized and

deserialized on the server of 1P , 2P , (formally on 2.P S , 1.P S). Let us define link

time (,)link iT P P as the average delay of a link between processes P and iP :

(,) (,). _link i iT P P link P P avg delay= .

Let us define serialization time, (,)ser iT P P as:

(,)
(,) ((,), .)

j i

ser i ser j i
M M P P

T P P T M P P P S
∈

= ∑ where

• (,)iM P P is the set of all messages sent by iP to P , jM is a selected

message of this set

• ((,), .)ser j iT M P P P S is the serialization cost of the selected message

on the server of the receiver (formally on .P S). Section 3 details the
computation of this value.

Let us suppose that waiting delay of any process P is constant, 1()waitT P const=

In a more advanced model using workload estimation ()waitT P will not be
constant. Every process converts its input messages to output messages (this is
usually value transformation). Let us denote the time of this transformation with

_ ()data transformT P for process P. Let _ 2()data transformT P const= . In a more

advanced model it can depend on the types of data to convert. However, according
to our measurements, data transformation time is much smaller than serialization
time, it is (0)O . Let us define the service time of a process P, ()servT P as the

following: if the process receives its first input message at time 0t and sends its

last reply message at 1t , than 1 0()servT P t t= − . It is important to note that if a

process P interacts with process iP ,than () ()serv serv iT P T P≥ . Figure 1 depicts

such a case for process P interacting with process iP .

Cs. Legány et al.
Calculating Web Service Interaction Using Extended BPEL Language

 554

Figure 1

Process interaction graph

Figure 2 illustrates the process interaction graph of a system running on three
different servers (e.g. web server, application server, DB server).

Figure 2

Process interaction graph of a three-tier architecture

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 555

()servT P can be calculated using the previously defined values.

Let _() () ()inner wait data transformT P T P T P= + .

() () ()serv inner interactT P T P T P= + where ()interactT P is the summary of service
times for all processes P interacts with.

Interaction time depends on input and output interaction:

_ _() () ()interact interact IN interact OUTT P T P T P= +

Both _ ()interact INT P and _ ()interact OUTT P depend on the interaction method of P.

Let us focus now only on input interaction.

• If P interacts with all of its input processes sequentially:

_
()

() (,) (,) ()
i in

interact IN ser i link i inner i
P P P

T P T P P T P P T P
∈

= + +∑ where

()inP P is the set of P-sending processes.

• If P interacts with all of its input processes parallel:
{ }_ ()

() max (,) (,) ()
i in

interact IN ser i link i inner iP P P
T P T P P T P P T P

∈
= + + which

means that the input interaction time of P is determined by the maximum
input serialization time.

• Generally,

_
()

() (,) (,) ()
seq

i in

interact IN ser i link i inner i
P P P

T P T P P T P P T P
∈

= + + +∑

{ }
()

max (,) (,) ()
par

j in

ser j link j inner j
P P P

T P P T P P T P
∈

+ + + where

() ()
in

seq
inP P P P⊆ is the set of sequential P-sending processes and

() ()
in

par
inP P P P⊆ is the set of parallel P-sending processes. Similarly,

{ }

_
()

()

() (,) ()

max (,) ()

seq
i out

par
j out

interact OUT ser i inner i
P P P

ser j inner j
P P P

T P T P P T P

T P P T P

∈

∈

= + +

+

∑

One can now calculate the service time of any process with these recursive
equations. Response time (the time needed to get response from the server for a
request) is the service time of the top-level process of the process interaction

Cs. Legány et al.
Calculating Web Service Interaction Using Extended BPEL Language

 556

graph (0()resp servT T P=). For example () ()resp serv webregisterT register T P=

(where webregister webP P∈) in the web user registration example.

Figure 3 displays an example for this recursive approach. The message sent from
P to iP will arrive to iP in ()link iT P time. iP has to wait waitT time before it
can start processing the input message. After serialization, data has to be
transformed and serialized again. Finally iP sends its reply back to P over the

network. DTT denotes _data transformT in the figure.

Figure 3

Recursive service time approach

2.2 Resource Cost Calculation

This section will focus on the calculation of resource cost of processes. Every
process determines the server it is running on, and is made up of sub-processes.
Let us denote all types of cost with L, cost of a given M message on server S can
be obtained as:

.

(,) . ()* .
t M types

L M S S cost t M unit
∈

= ∑ where

• t is a selected type of message M

• . ()S cost t is the cost of t on server S

• .M unit denotes the number of units for type t in message M

Note that . ()S cost t can be either memory, IO or CPU cost. Different types of
costs (e.g. memory and IO) and costs on different servers (e.g. CPU cost on
application server and web server) should not be summarized.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 557

Each sub-process has multiple input and output messages, thus the cost of a sub-
process 1subP can be calculated as:

1 1 1() (, .) (, .)
in out

sub in sub out sub
M M

L P L M P S L M P S
∀ ∀

= +∑ ∑ where

• 1(, .)
in

in sub
M

L M P S
∀
∑ is the summary cost of all input messages of 1subP

on server S.

• 1(, .)
out

out sub
M

L M P S
∀
∑ is the summary cost of all output messages of

1subP on server S.

The cost of each process is the summary cost of its sub-processes:

()
() ()

sub

i
i P P

L P L P
∀ ∈

= ∑ where ()subP P is the set of sub-processes of P.

3 Example

Let us suppose that a new user registers on a web site and finally 1DBP and

2DBP sub-processes are two stored procedures (processes) running on the database

server, 1DBP stores the user’s data while 2DBP is used for logging purposes. The

input message of 1DBP (UserInfo) and the input message of 2DBP
(UserRegistration) can be found in Listing 1. Both processes will reply with a
message containing one boolean variable.

<message name="UserInfo">
<part name="UserName" type="xsd:string" size=”10” unit=”1”/>
<part name="Password" type="xsd:string" size=”20” unit=”2”/>

</message>
<message name=”UserRegistration”>
 <part name=”date” type=”xsd:date” size=”10” unit=”1”>
</message>

Listing 1

Example input messages of 1DBP and 2DBP

Cs. Legány et al.
Calculating Web Service Interaction Using Extended BPEL Language

 558

3.1 Calculating Serialization Costs on the Database Server

Now we will focus only on serialization costs. 1DBP and 2DBP are running on the
same S_DB database server, which has the following serialization costs displayed
in Listing 2.

<server name=”S_DB”>
<type name=”xsd:string”>
 <cost name=”serialization” value=”10” /></type>
<type name=”xsd:date”>
 <cost name=”serialization” value=”5” /></type>
<type name=”xsd:boolean”>
 <cost name=”serialization” value=”1” /></type>

</server>…

Listing 2
Example serialization costs

The total serialization time of 1DBP is

1 1 1 1() ((,), .) ((,), .)

(10*1 20*2)*10 1*1*1 501
ser DB ser app DB DB ser DB app appT P T M P P P S T M P P P S= + =

+ + =

Similarly, 2() 10*1*5 1*1*1 0 51ser DBT P = + + =

The total serialization time on the database server is 552.

3.3 Calculating Service Times

Let us suppose that

_ 1() 100data transform DBT P = , _ 2() 20data transform DBT P = ,

_ () 100data transform appT P =

1() 10wait DBT P = , 2() 10wait DBT P = , () 10wait appT P =

1 1 2

2

(,) (,) (,)

(,) 10
link app DB link DB app link app DB

link DB app

T P P T P P T P P

T P P

= = =

= =

(,) (,) 10link app web link web appT P P T P P= =

It means that

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 559

1 _ 1 1() () () 110inner DB data transform DB wait DBT P T P T P= + = and

2() 20 10 30inner DBT P = + =

1 1 _ 1 1() () () ()serv DB wait DB data transform DB interact DBT P T P T P T P= + + =

1110 ()interact DBT P= + Similarly, 2 2() 30 ()serv DB interact DBT P T P= +

Interaction time is based on message and link times. Both database sub-processes
interact only with appP .

1 _ 1 _ 1 1() () () (,)interact DB interact IN DB interact OUT DB ser app DBT P T P T P T P P= + = +

1 1(,) (,)link app DB ser DB appT P P T P P+ +

1 1 1(,) ((,), .) 500ser app DB ser app DB DBT P P T M P P P S= =

1 1 1(,) ((,), .) 1ser DB app ser DB app DBT P P T M P P P S= =

thus 1() 500 10 1 511interact DBT P = + + = .

Similarly 2() 60 10 1 71interact DBT P = + + = .

Finally we get:

1() 110 511 621serv DBT P = + = and 2() 30 71 101serv DBT P = + =

We can also compute the service time of appP as follows. Let us suppose that

serialization costs are double on the application server than on the database server
according to Listing 3.

<server name=”S_APP”>
<type name=”xsd:string”>
 <cost name=”serialization” value=”20” /></type>
<type name=”xsd:date”>
 <cost name=”serialization” value=”10” /></type>
<type name=”xsd:boolean”>
 <cost name=”serialization” value=”2” /></type>

</server>

Listing 3
Serialization costs on the application server

Let us suppose that appP receives the following input message (Listing 4) from

webP . It is important to note that the input message of appP does not contain a

UserRegistration input message for 2DBP , appP knows that if it receives a UserInfo

Cs. Legány et al.
Calculating Web Service Interaction Using Extended BPEL Language

 560

message, it should send a UserInfo message to 1DBP and a UserRegistration

message to 2DBP .

<message name="UserInfo">
<part name="UserName" type="xsd:string" size=”10” unit=”1”/>
<part name="Password" type="xsd:string" size=”20” unit=”2”/>

</message>

Listing 4

Input message of appP from webP

The serialization time of this input message is:

(,) ((,), .) (10*1 20*2)*20ser web app ser web app appT P P T M P P P S= = +

appP sends two messages two the database sub-processes, as shown in Figure 2.

Their serialization time is:

1(,) (10*1 20*2)*20 1000ser app DBT P P = + =

2(,) 10*1*10 100ser app DBT P P = =

appP receives two messages from the database sub-processes, the serialization

time of the response of 1DBP is: 1(,) 2*1*1 2ser DB appT P P = = . Similarly,

2(,) 2ser DB appT P P = .

appP sends one message containing a boolean variable to webP . The serialization

time is: (,) 1*1*2 2ser app webT P P = =

The interaction time of appP is:

_ _() () ()interact app interact IN app interact OUT appT P T P T P= +

{ }

_

1 1 1

2 2 2

() (,) (,)

(,) (,) ()
max

(,) (,) ()

1000 10 max 122, 42 1132

interact IN app ser web app link web app

ser DB app link DB app inner DB

ser DB app link DB app inner DB

T P T P P T P P

T P P T P P T P

T P P T P P T P

= + +

+ +⎧ ⎫⎪ ⎪ =⎨ ⎬+ +⎪ ⎪⎩ ⎭
= + + =

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 561

since appP receives 1(,)app DBM P P and 2(,)app DBM P P from two parallel-

running processes.

_ 1() (,) (,)interact OUT app ser app web ser app DBT P T P P T P P= + + 2(,)ser app DBT P P =

2 1000 100 1102= + + = . Now we can compute ()serv appT P as:

_() () () ()
serv

interact
serv app wait app data transform app appT P T P T P T P= + + =
110 1132 1102 2344= + + = (msec)

Conclusions and Future Works

This paper introduced a method to calculate key parameters in a web service
interaction using extended BPEL language.

The initial model of interacting web services was extended using standard XML
elements. A recursive method was detailed to calculate service times and response
times of processes. However, in order to estimate throughput or resource
utilization, a workload model is required. An appropriate workload model can
define the arrival rate, service rate and waiting time of a process. Future work will
include the introduction of a workload model.

References

[1] Business Process Execution Language for Web Services,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[2] Modeling Extended BPEL Language, Csaba Legány, Márk Kaszó

[3] Rai Jain, The Art of computer performance analysis, Whiley, 1991

[4] Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl , March 2001

[5] Extensible Markup Language (XML). http://www.w3c.org/XML

