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Abstract: General purpose modeling languages, such as UML, had a great impact on 
reliable software engineering. After realizing the need for automated code generation from 
models, the more appropriately customizable Domain-Specific Languages emerged. The 
creation of these languages requires metamodel-based environments, in which new 
languages can be designed in a visual way with minimal amount of coding. Translations 
between different domain-specific models can be performed automatically by model 
transformation systems if the necessary conversion steps are defined. Usually, model 
transformation systems store their models in memory, however in this way the model 
distribution is hardly possible. The performance of database-based modeling environments 
is considerably lower than those of in-memory versions. This paper introduces the steps of 
converting a database-based modeling system into a modeling environment that is able to 
work in both database and memory without having to duplicate the previously implemented 
algorithms. 
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1 Introduction 

Modeling languages, such as the Unified Modeling Language (UML) [1], are 
among the most frequently used abstraction methods in reliable software 
engineering. UML is a general-purpose modeling language that includes a 
graphical notation used to create an abstract model of a system. It is important to 
notice that UML stands for the different types of diagrams and for the model 
itself. UML diagrams are used to visualize a model; from the software 
development point of view, UML models are much more important than their 
representations, because the model can grant the preferred level of abstraction in 
defining the application details. By forcing the developer to design an appropriate 
model for the application, the overall quality of the implemented system is 
improved. Although the creation of UML-based modeling systems had a great 
impact on software development, UML has a few weaknesses, which are caused 
by having an imprecisely specified abstract syntax and being a too general-
purpose modeling language, which aims to model all possible domains. These 
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problems make source code generation hardly possible. In general, this means that 
there are cases when UML-based modeling tools are not flexible and not powerful 
enough to express all the constraints which arise in a special domain. In these 
cases, more flexible languages are needed to handle the specialties of the selected 
domain. 

Using Domain-Specific (Modeling) Languages (DSMLs or DSLs) [2] is a widely 
adopted way to overcome these problems. DSLs tend to support a higher-level of 
abstraction, than general-purpose modeling languages, therefore, they require less 
effort and fewer low-level details to specify a given system. Since DSLs contains 
only domain-specific model elements, they allow precise code generation for the 
given field. Being free from the manual creation and maintenance of source code 
means that DSLs can significantly improve developer productivity. Obviously, to 
achieve this high productivity, one needs to have a proper modeling language for 
the domain under investigation. To define a language, another language is needed 
to specify the definition in. The language used in specifying a model is often 
called a metamodel; hence the language for defining a modeling language is a 
metametamodel. Metamodeling [3] is a user-friendly, graphically supported way 
of avoiding manually coding the DSLs unnecessarily. Metamodeling tools give 
the ability to edit a metamodel, which defines the rules of a model. The 
metamodel determines which types of objects are allowed during the modeling 
process and what kind of attributes or relations they can have. A metamodel can 
also contain textual constraints that should be enforced by the environment in the 
modeling process. The two-layer model-metamodel system can be extended to an 
arbitrary layered one. For instance, if we define a metamodel for the UML class 
diagram, we create a three-layer instantiation model, in which the topmost layer is 
the defined metamodel, the class diagram represents the middle layer, while the 
lowest modeling layer is the object diagram. Notice that in this chain, the middle 
layer behaves as an instance of the upmost layer, and – at the same time – it is the 
metamodel of the object diagram. 

After being able to create customizable models based on metamodels, the natural 
need to transform a model into another arises. Model transformation is the process 
of converting a model conforming to a metamodel to another model, which 
conforms to another metamodel. The first metamodel is called the source 
metamodel, the second is referred to as the target metamodel. (The two 
metamodels do not necessarily differ.) Additionally, sometimes it is useful to 
handle transformations sequentially as a chain of transformation rules in which the 
output of one transformation is the input of another. This method of translating a 
model into another is not trivial, QVT [4] has been proposed by the Object 
Management Group to handle this task. 

As it can be seen a model transformation environment, such as the Visual 
Modeling and Transformation System [5], has to allow flexible metamodel-based 
software modeling and also needs to be able to process and execute 
transformations on the models created. 
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2 Related Work 

Visual Modeling and Transformation System (VMTS) [5] is an n-layer 
metamodeling and model transformation environment. VMTS has been fully 
implemented in Microsoft .NET Visual C#. The system benefits from the results 
of the mathematical background of formal languages, graph theory, category 
theory, graph rewriting and metamodel-based software model transformation. In 
VMTS, metamodel rules are automatically forced when editing models. Model 
transformations are based on graph rewriting techniques. A domain-specific 
control flow language is used to specify the transformation-steps and rewriting 
rules are also specified by a visual language. During the model transformation 
process, the tool facilitates the validation of the constraints specified in the 
transformation rules. Moreover, VMTS supports OCL-based [6] textual 
constraints, which can be attached to metamodel elements. Models and 
transformation rules are formalized and stored as directed, labeled graphs. VMTS 
consist of several parts as shown in Fig. 1. 

 

Figure 1 
The schematic structure of VMTS 

The Attributed Graph Architecture Supporting Inheritance (AGSI) [5] offers a 
high-level graph interface for the other components to reach the data repository. 
As previously mentioned, VMTS handles the models as graphs; every graph is 
stored in the underlying relational database. In this way, the models can be 
reached from different computers at the same time, thus a team can work on the 
same project from different locations. 
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3 Contribution and Improvement 

In a modeling tool, such as VMTS, storing the graphs in a database seems to be a 
good idea; however, in several cases it means a huge inconvenience. Database-
based storage raises performance issues in several algorithms as every time a 
model element is needed by the system for a calculation, the framework needs to 
query the data from the database. Thus, comparing the performance of an 
algorithm to other transformation systems is hardly possible in this way. Therefore 
in-memory data representation is highly needed in VMTS. Obviously, the 
advantages of the database storage should not be lost in the new system, thus the 
new solution has to be compatible with the previous one. Furthermore, since the 
algorithms have already been implemented for the database version, the in-
memory solution should not duplicate the code of the algorithms. The following 
sections introduce the architecture of the developed in-memory transformation 
system, called AGSI Compact. 

3.1 Model Elements 

In AGSI Compact, we decided to use a common interface for reaching the model 
elements with abstract base classes, which have their mode-dependent (DB or 
Compact) derived classes. Fig. 2 depicts the hierarchy of the base classes. 

As previously mentioned, VMTS utilizes graphs as the mathematical background 
for its models. Vertices and edges are represented in the system by AgisNodeBase 
and AgsiEdgeBase classes. An edge can connect two nodes in the system, as it 
seems obvious. However, a third model element is also present in the system, 
named AgsiAssociationEdgeBase, which acts as an association node defined in 
UML. A node and an edge can be connected by an association edge, which is 
rarely needed, however, there are cases when software modeling tasks cannot be 
solved without this abstraction. The three low level classes are generalized into a 
model element class, AgisModelElementBase, which allows the non-
differentiating handling of these classes. In VMTS, the creation of nested, 
hierarchical models is possible, a node may contain any kind of model elements, 
therefore, the AgsiNodeBase implements the IAgsiContainer interface, which 
declares functions for reaching the child elements. 

Creating the abstraction of a modeling task requires a model class, which 
represents an aspect of the problem, or the whole problem. This model class, 
AgsiModelBase, serves as a container for the nodes and edges created during 
modeling, thus it implements the IAgsiContainer interface. Furthermore, as a 
model represents a whole modeling task, it also implements the IAgsiPackage 
interface. However, as models have their metamodels and properties as well, it 
derives from the same class as the model elements, the AgsiModelItemBase. 
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Figure 2 

Hierarchy of the base classes 

On the next level, three classes are defined (AgsiModelItemBase, AgsiProjectBase, 
AgsiDiagramBase), which act in different ways. Recall that the 
AgsiModelItemBase class is responsible for the representation of metamodel-based 
items. The project class acts as a whole task, which may contain several different 
modeling subtasks. And finally, the AgsiDiagramBase is the class that is 
responsible for the visualization of the models. These three topmost classes derive 
from the AgsiItemBase root class, which only holds a unique identifier and a name 
as attributes. 

3.2 Derived Classes 

The general architecture of the classes has been introduced in the previous section. 
Recall that each abstract base class has its implementations on both platforms 
(DB, Compact). In this section, the AgsiNode classes are presented; however, all 
the other classes follow the same implementation concept. Fig. 3 shows the 
AgsiNodeBase, AgsiNodeCompact and AgsiNodeDB versions of the node class. 
Recall that VMTS is written in Microsoft .NET C# [7], thus the implementation 
may be based on C# specific constructs, such as properties; however, the 
introduced solutions may be applied in any object-oriented language. 
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The obvious difference between the Compact and the database version is that the 
Compact can keep every data in memory, while the database version has to query 
everything from the underlying database, even if two consecutive requests need 
the same attribute value. The base class defines protected member variables, thus 
those are available in both derived versions. The Compact version utilizes these 
in-memory variables, however the DB version overrides the defined properties, 
which retrieves or sets the values. It performs a database query to the appropriate 
node row in the database every time a value is needed. The unique identifier of the 
node is stored in the _node protected member variable defined in the AgsiNodeDB 
class. 

 
Figure 3 

AgsiNode classes 

On one hand, the constant database queries decrease the performance in the DB 
version and it is hardly possible to achieve any increase because the bottleneck of 
the system is the database. On the other hand, in case of the in-memory version, 
the performance can be increased towards, for example with hashtables. For 
instance, in AGSI Compact, a node has not only a list with the edges connected, 
but has several hashtables indexed by the type of edges. This means that if we 
want to find a connected inheritance edge, then we have to check the hashtable of 
inheritance edges only. Caching hashtables are automatically created and 
maintained by the environment. 
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Every item has a delete() method, which removes the actual element from the 
system. Naturally, if an element is deleted, the contained elements should also be 
deleted, and the linked edges as well. The corresponding hash tables have to be 
maintained in the system, thus the appropriate entries have to be deleted. 

3.3 Reaching the Model Elements 

It has been shown how each model element behaves in both versions of the 
system. The AGSI framework has to be connected to several parts of VMTS, 
which have the tasks of creating/retrieving models, nodes, etc. 

To handle these kind of accessibility issues, factory classes have been utilized, 
which implement the IAgsiFactory interface. Fig. 4 shows the interface with its 
methods. 

 
Figure 4 

IAgsiFactory interface 

All of the ‘create’ functions work as a factory method, thus, if a requested model 
item does not exist, then the method creates one with the given identifier. In this 
way the new and existing items can be handled transparently. 

Obviously, in case of the in-memory version it would be difficult to retrieve all the 
created nodes without a list of the nodes. These requests which concern all of the 
model items are also placed in an interface, which is implemented by a class for 
the Compact and DB versions respectively. 

As previously only database-based models were supported in VMTS, the 
identification of a model element was simply based in unique identifiers. In this 
new multi-mode version, this would not be appropriate, the identifiers have to be 
changed to base class objects. In this way, the system does not have to know 
which mode is running currently. 
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4 Performance 

The best way of comparing the performance of our system to others is choosing a 
benchmark test and run it on several different transformation systems. The basis of 
the comparison was the case study of [8]. 

Fig. 5 shows the time required by matching a specific pattern in different 
transformation tools. The benchmark model and transformation is borrowed form 
[8], from which we utilized the case of long transformations (long TS) without 
optimization. The results are measured in ms, for a single application of the rules. 

Model size AGG PROGRES Fujaba DB-
based 

VMTS 
DB 

VMTS 
Compact 

21 1.86 0.62 0.15 4.15 1326 0.21 
5001 1116.34 269.58 0.26 20.47 30000 1.2 

Figure 5 
Performance of model transformation approaches [8] 

According to the results, VMTS DB was very slow because of the underlying 
relational database. The results show that VMTS Compact requires approximately 
three orders of magnitude less time to apply the same transformation as VMTS 
DB. Furthermore, the tests have shown that VMTS (based on the AGSI Compact 
Framework) is one of the fastest transformation engines. 

5 Future Work 

Future work includes several tasks which have not been implemented fully in the 
Compact version. As the AGSI Compact Framework was created primarily to 
increase the performance of the system and support parallel model transformations 
[9], no visualization data is supported in the current version. In the database 
version, the visualization is based on XML data, which stores the visualization 
information, such as current position, size, and color of each model element. The 
implementation of this can be expected in the near future. 

The switching between modes is not supported either. This means, that currently 
the user has to choose between the two modes (DB, Compact) before the 
application is started. It would be highly useful to be able to switch between the 
modes at run-time. In this case, the user could modify the shared model in the 
database and – after changing to Compact mode – the transformation could be run 
in memory, which would mean better performance. In this way, the advantages of 
both modes could be kept in a single system. Any further work which is not 
dependent on a specific mode will be implemented on top of the common 
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interface; therefore both versions will become available for the same 
implementation of the algorithm. 

Conclusions 

This paper introduced a database-based model transformation system, Visual 
Modeling and Transformation System developed at our department. The paper has 
shown how this system can be transformed into another one which supports both 
database and in-memory use without having to duplicate previously existing code. 
Naturally, both modes have their advantages, such as in case of database mode, 
one does not need to care about the distribution of the created models, and several 
users can modify the same model at the same time. While in case of in-memory 
use, higher performance of model transformations can be achieved as one of the 
main bottlenecks of the system is eliminated. Section 4 can be considered part of 
the conclusion as it shows the achieved performance raise in the system. By 
eliminating the database from the system, the transformations are executed in 
three orders of magnitude less time then previously. 
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