
Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 583

Modeling the User Interface of Mobile Devices
with DSLs

István Madari, László Lengyel, Tihamér Levendovszky
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
{pityusz, lengyel, tihamer}@aut.bme.hu

Abstract: Developing to multiple mobile platforms meet difficulties, due to hardware
incompatibilities, various programming languages, and implementations. Mobile
communication devices evolved dynamically in the past few years and the number of
operating systems and runtime environments are significant too. Developing to multiple
mobile platforms or porting applications could be very expensive. Modeling based on
Domain-Specific Languages, could provide a possible solution. By the help of
metamodeling, and multi-paradigm modeling (MPM) we can develop user interfaces for
different mobile platforms with the same functionality. This paper presents how metamodels
should be developed for multiple mobile platforms. The presented metamodels and
examples are developed in our metamodeling and model transformations system: Visual
modeling and Transformation System (VMTS).

Keywords: Multi-Paradigm Modeling, Model-Driven Architecture

1 Introduction
Complexities of application development on various mobile platforms have
become very difficult. The varied programming languages and hardware
differences, incompabilities of mobile devices are the cause of complication.
When the application needs to be run on other mobile platform, it is necessary to
rewrite it. Model-based solutions help to reduce the time of development, creates
an opportunity to port applications from a platform onto the other one, and the
issues, caused by the different devices and platforms, could be solved.

To model a system, different aspects must be analyzed. All of the aspects should
cover some functionality of the application, including the user interface,
communication, underlying database, system architecture, and so on. Different
abstraction levels could be chosen for the modeling: low-level abstraction for
detailed models to generate applications, and higher level models to write system
review or management purposes [1].

I. Madari et al.
Modeling the User Interface of Mobile Devices with DSLs

 584

Current paper is driven by a case study, where the goal is to develop the same
functionalities, starting with the user interface, for different mobile platforms.
Metamodeling, model abstraction, model transformation are the key enablers for
this complex problem.

2 Motivation
The cost of developing applications for different mobile platforms could be very
high, due to compatibility issues. Using modeling technologies, lower
development cost, and less development time could be achieved.

Domain-specific modeling (DSM) is an engineering methodology for developing
software applications, and it can cover different abstraction levels [2]. The basic
idea of DSM is that the platform commonalities and diversities are described in a
domain-specific modeling language (DSML) that is based on the domain itself,
and the final products are automatically generated from these models [1].

During the research, Java, Symbian, and .NET Compact Framework [7] have been
chosen for our target platforms. User interfaces are modeled for these platforms.
To achieve the goals, the target platforms are analyzed, and then the metamodels
of the user interfaces are composed for each platform.

There are two possibilities how to build the metamodels for this purpose. The first
solution contains one common metamodel. In this case, the metamodel must
contain all user interface component from all of the platforms. When an instance is
created, the user has to fill all attributes, and these attributes will cover the
capabilities of user interfaces on all target platform. Due to the common
metamodel the model size is huge (because all user interface element of all target
platforms are contained), and really hard to maintain it. During the code
generation, the system will check these attributes, and selects the corresponding
attributes for the actual target platform. This method has some problems due to the
issues of the different user interface concepts and structures (e.g. Symbian has a
Tabpage based concept, but in Java, the Tabpages could not be found). The
different attribute names and types are the other problem, implementation of these
differences are circuitous.

The second solution is to create separate metamodels for each platform. In this
case, the user should develop separate models for each platform. By the power of
model transformation, we can define transformations between the models of the
target platforms, and the user has to develop one user interface, then the rest of
models will be generated automatically by model transformations. The Visual
Modeling and Transformation System (VMTS) [3] is a modeling graph rewriting-
based model transformation framework. The results of this paper are implemented
within the VMTS. Our goal is to define metamodels for the target platforms, using
the VMTS, and supply corresponding plugins for the development.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 585

3 Backgrounds
Visual Modeling and Transformation System (VMTS) is our implemented
medamodeling framework. It supports to create models based on metamodels, and
it can execute model transformations between models. VMTS has plugin
architecture. By the help of plugins the model elements could presented as known
shapes of the current domain. The plugin is a DLL file, written in C#, and it
follows the Model-View-Controller architecture. By using VMTS plugins, every
model elements can be assigned to a graphical representation. It makes possible to
use the visual editor as a user interface designer. The currently supported mobile
user interfaces are depicted in Figure 1.

Figure 1

User interface design for (a) Symbian, (b) Java and (c) .NET platforms

VMTS provides model transformation functionality. The model transformation is
based on graph rewriting, a powerful technique for graph transformation with
strong mathematical background [1]. Rewriting rules must be given to define a
transformation step. Rules are consisting of an LHS (left-hand side) and an RHS
(right-hand side) graph, and the transformation engine finds an isomorphic
occurrence of LHS in the source graph, and it replaces the matched atoms by the

I. Madari et al.
Modeling the User Interface of Mobile Devices with DSLs

 586

RHS graph (an example LHS and RHS rules depicted in Figure 2). The example
rewriting rule is transforming Symbian TabPages into JAVA forms. The
connection between the LHS and RHS graphs is realized by internal causalities
and the attribute transformations are realized by imperative OCL [5] scripts. By
imperative OCL scripts we can define modifications, removing steps, or create
new elements.

Figure 2

An example rewriting rule

The metamodel defines the abstract syntax of the target platform, and the user will
develop a model, based on this metamodel. By the developed model, the
framework can build a CodeDOM [6] model, which supports source code
generation. The CodeDOM model is hierarchical structure, and it contains a
language independent representation of the classes, attributes to generate.

The VMTS framework contained a common metamodel to define the user
interface resources for mobile platforms. This common metamodel was not
efficient, because incompatible issues of the target platforms, and the diversities of
the used user interface structures.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 587

4 Contributions
The common metamodel for the mobile platforms defines all of the user controls,
which occurs on any of the supported mobile platforms, but the above-mentioned
(in Sections 2 and 3) reasons inspired us to improve the existing metamodel, and
apply a better method to define the abstract syntax of the target platforms.

The method is to develop separated metamodels, and each metamodel belongs to a
target platform. In this case the common metamodel does not exist anymore. The
code generation, and the model building are based on these separated metamodels
too. The separated metamodels are illustrated in Figure 3.

Figure 3

The separated metamodels. (a) Java, (b) Symbian, (c) .NET Compact Framework

By the separated models, the users can develop user interfaces for just one target
platform. The user has to choose which platform is the most familiar for him, and
he develops user interfaces for that platform. The other user interfaces will be
generated using model transformations.

The separated metamodels has many advantages: easy to maintain, there are no
large numbers of controls, and the attribute names are matched to attributes of
classes of the target platform. The diversities of the target platforms will be hidden

I. Madari et al.
Modeling the User Interface of Mobile Devices with DSLs

 588

from the user: they will be solved by the model transformation. Opposite the
common metamodel the user does not have to fill all attributes of all platforms, the
user has to work on just one model.

Then again we have to develop model transformations between the different
models. These model transformations could be very difficult.

Conclusions and Future Work

We have provided a case study, where metamodels are defined for the target
platforms. The incompatible structures, user interfaces, diversities of the target
platform will be superable by the graph transformations. The same control is not
accessible on all platforms, but we have to develop the same services on the
different platforms. For example, Symbian using Tabpage concept on user forms,
but in Java we can not find Tabpages. The graph transformation has to convert the
tab pages into forms, and it has to create some navigation functions. The goal is to
develop the same service on different mobile platforms.

Acknowledgement

The fund of ‘Mobile Innovation Centre’ has supported, in part, the activities
described in this paper. This paper was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

References

[1] Lengyel, L., T. Levendovszky, H. Charaf, Applying Multi-Paradigm
Modeling to Multi-Platform Mobile Development, 2007

[2] Sztipanovits, J. and G. Karsai, Model Integrated Computing, IEEE
Computer, 1997

[3] VMTS Homepage: http://vmts.aut.bme.hu

[4] OMG MDA: http://www.omg.org/docs/bei/02-06-08.pdf, 2003

[5] OMG, Object Constraint Language,
http://www.omg.org/docs/ptc/03-10-14.pdf

[6] Roger, R. Generating Design Patterns using CodeDOM, 2002

[7] Wei Meng L., B. Jepson, Programming the .NET Compact Framework,
2007

[8] Vangheluwe, V. and J. de Lara, Computer automated multi-paradigm
modelling: Meta-modelling and graph transformation, Winter Simulation
Conference, 2003, pp. 595-603

[9] Lengyel, L., T. Levendovszky, G. Mezei and H. Charaf, Model
Transformation with a Visual Control Flow Language, International
Journal of Computer Science, 2006 (I), pp. 45-53

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 589

[10] Gamma, E., R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements
of Reusable Object- Oriented Software”, Addison-Wesley, 1995

[11] Ehrig, H., G. Engels, H. J. Kreowski, G. Rozenberg, “Handbook on Graph
Grammars and Computing by Graph Transformation: Application,
Languages and Tools”, World Scientific, 1999 (Vol. II), Singapore

