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Abstract: The transformation from UML activity diagrams to CSP models is a helpful 
model transformation, which can be used to analyze and verify some aspects of a UML 
activity diagrams. A working solution has been developed with our tool, the Visual 
Modeling and Transformation System, and in this work we formally prove that the 
transformation terminates for every valid input activity diagram model, and therefore it can 
be used in practice. 
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1 Introduction 

1.1 Motivation 

Model transformation has become a focused area in model-driven research. Graph 
rewriting systems and the theories related to them are widespread applied in model 
transformations. Graph transformation provides a rule-based modification of 
graph models. 

The analysis of formal properties of transformations is important. One essential 
property is the termination of a transformation. In general, it is undecidable 
whether a graph rewriting system is terminating [11]. In certain cases, we can 
guarantee the termination, for example if in the transformation, all rules are 
applied only once and no loop is available. We can also define constraints on the 
input models. Our aim is to guarantee that the transformation terminates after 
finite number of steps for every valid input model. 
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The Unified Modeling Language (UML) [1] is the de facto standard of software 
design. UML activity diagrams are used for example to describe the low-level 
behavior of software components and to model business processes. 

Communicating Sequential Processes (CSP) [2] is a formal language for 
describing patterns of interaction in concurrent systems and it is supported by a 
mathematical theory. 

To analyze the behavior of a UML activity diagram and to verify some aspects of 
it, we need a formal semantic [3], the CSP is appropriate for this function. This is 
why a transformation, which converts UML activity diagrams to a CSP models is 
very helpful. 

In this work, we use our transformation, which generates CSP models from UML 
activity diagrams and prove that this transformation terminates, and therefore, this 
can be applied for any valid UML activity diagram input model. 

1.2 Problem Statement 

To use CSP as a semantic domain for activity diagrams we need a precisely 
defined mapping from diagrams to CSP models. In [4], the transformation method, 
and the metamodels of CSP models and UML activity diagrams are presented. 

Our group in the Department of Automation and Applied Informatics has 
developed Visual Modeling and Transformation Systems (VMTS), a software tool 
that is able to design and run transformations. This environment is based on graph 
rewriting rules and metamodels. We published a solution for the UML to CSP 
transformation [5]. (To better understand the transformation itself, please read [5] 
or follow the steps in the tutorial [6].) The termination of this transformation has 
not yet been formally proved. 

1.3 Structure of Paper 

The rest of the paper is organized as follows: in Section 2, our UML to CSP 
transformation and the rules of the transformation are detailed. In Section 3, some 
important definitions and theorems are summarized, and finally termination 
analysis is presented in Section 4. 

2 Transformation 

The control flow of the UML to CSP transformation is shown in Figure 1. VMTS 
uses the notation of UML activity diagrams to describe transformations. In the 
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control flow, rules, directed edges and decision nodes can be found. There are two 
important properties, which cannot be seen in the figure: 

1 The application of Process Activity Edge rule is exhaustive. This means that 
the rule is executed repeatedly while it is possible to apply. The transformation 
proceeds to the next rule only when it cannot be matched with the input model, 
or the execution was unsuccessful. Process Final Node, Process Join Node and 
Process Merge Node rules are also exhaustive rules. 

2 Each decision node of the transformation control flow is left by two edges. The 
transformation proceeds to the edge with the label success if the application of 
the previous rule succeeded. If the previous rule could not be matched, or the 
application was unsuccessful, then the transformation proceeds to the edge 
with the label failure. 

 

Figure 1 
Transformation control flow 

2.1 Metamodels 

VMTS uses metamodels to validate the LHS and RHS patterns of the rules, and 
the input model as well. Metamodels of UML activity diagrams and CSP models 
are presented in [4]. 
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2.2 Transformation Rules 

In VMTS, model processing is based on graph transformations [9]. The elements 
of a transformation are graph rewriting rules. A rewriting rule consists of a left-
hand side (LHS) and a right-hand side (RHS) pattern. LHS describes the part of 
the model we are searching for, RHS defines the replacement pattern. 

In Figure 2, the Process Initial Node rule is shown. In RHS, a CspContainer 
element can be seen, which cannot be part of the activity diagram model because 
it is a CSP element. This is a newly created element, which will be placed into the 
output CSP model. In other rules, CSP model elements appear in LHS as well, but 
these are also elements of the output CSP model. 

 

Figure 2 
Rule Process Initial Node 

Constraints can be defined for any elements of the LHS, or RHS using Object 
Constraint Language (OCL) [10]. Every activity diagram element has an attribute 
named IsProcessed. During the application of the rules we change the value of this 
attribute, and we define constraints in LHS to guarantee that certain elements 
cannot be processed twice with the same rule. 

In Figure 3, the Process Activity Edge is shown. When the LHS of the rule is 
matched, a constraint is checked if the value of the IsProcessed attribute owned by 
the Action element is an empty string. If we apply the rule successfully, we change 
this value to ‘processed’ so this rule cannot be matched again with the same 
Action element. 

 
Figure 3 

Rule Process Activity Edge 

In Figure 4, the Process Final Node rule is shown. We use the IsProcessed 
attribute of the FinalNode element of the LHS, as described before. 
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Figure 4 

Rule Process Final Node 

In Figure 5, the Process Join Node rule is presented. The value of IsProcessed 
attribute of the JoinNode of LHS is checked and modified during the application 
of the rule in the same way as in the two previous rules. 

 
Figure 5 

Rule Process Join Node 

In Figure 6, the Process Merge Node rule is shown. We check and modify the 
IsProcessed attribute of the MergeNode element of LHS. 

 
Figure 6 

Rule Process Merge Node 

The rules, the name of which starts with the word Preserve are needed because 
some characteristics of the VMTS control flow language, but they do not modify, 
create or delete any elements. 

In Box A in Figure 1, the processing of the decision nodes of the input activity 
diagram is realized with a complex control flow, with more than one rule. The 
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Process Decision Node Step 0 (Figure 7/a) matches a decision node of the input 
model. When we apply this rule we check and modify the IsProcessed attribute of 
the DecisionNode element of LHS. The Process Decision Node Recursive Step 
(Figure 7/b) processes an edge which leaves the decision node in each step. We 
check and modify the IsProcessed attribute of the ActivityEdge of LHS. The 
Process Decision Node Last Step (Figure 7/c) processes the last edge, the guard 
condition of which is else. 

           
Figure 7 

Rules Process Decision Node Step 0 (a), Process Decision Node Recursive Step (b), Process Decision 
Node Last Step (c) 

With external causalities [5], we guarantee that after the successful application of 
the Process Decision Node Step 0 rule, the Process Decision Node Recursive Step 
rule and the Process Decision Node Last Step rule matches the same 
DecisionNode element in LHS that we matched in the first rule. 

The processing of the fork nodes (Box B in Figure 1) operates in the same way as 
the processing of the decision nodes, the rules are shown in Figure 8. 
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     .  
Figure 8 

Rules Process Fork Node Step 0 (a), Process Fork Node Recursive Step (b), Process Fork Node Last 
Step (c) 

3 Backgrounds 
To describe graph transformations and graph rewriting rules, we use the 
definitions and theorems presented in [8]. Note that the theorems in the referenced 
documents are proven to injective matches only. Here we also use the formalism 
of [7]. In the following we summarize some important definitions and a theorem. 

Definition 3.1 Let ,...)2,1( =ipi  be a sequence of graph productions and 

))*,,(( 1+iii eeE  a sequence of E-dependency relations. 

Compose the sequence of E-based compositions *)**(* iiii RKLp →←=  
where 11* pp = and nEEEn pppp

n
+++= ...)(*

21 21 . 

Definition 3.2 A cumulative LHS series of a production sequence is the graphs 
series *iL  consisting of the left hand side graphs of *np . 

Definition 3.3 The cumulative LHS size series of a production sequence is the 
nonnegative integer series |*| iL . 

Theorem 3.4 A graph transformation terminates if for all infinite cumulative LHS 
sequence of the graph productions created from the members of the productions of 
the system, it holds that 

∞=
∞→

|*|lim ii
L . 

(We assume finite input graphs and injective matches.) 



M. Asztalos et al. 
Termination Analysis of the Transformation UML to CSP 

 618 

4 Termination Analysis 

In connection with the following analysis three notes have to be made: 

1 VMTS uses finite input graphs and injective matches, so definitions and the 
theorem in Section 3 can be applied. 

2 When we analyze the rules we only work with the model elements which come 
from the activity diagrams. In LHS and RHS the elements of the output CSP 
models also appear, but these parts only restrict the application of the rules. 

3 During the whole transformation, we do not modify the structure of the input 
activity diagram except the value of the IsProcessed attribute of some 
elements. 

To prove the termination of the transformation UML to CSP, we use the following 
lemmas. 

Lemma 4.1 The exhaustive application of the rule Process Activity Edge 
terminates for every valid UML activity diagram input model. 

Proof Our aim is to prove that we cannot apply the Process Activity Edge rule 
infinite number of times for any finite input UML activity diagrams. 

In Figure 9, the rule itself is presented. Squares represent the graphs of LHS, RHS 
and the interface graph (K), and circles represent the Action elements. One circle 
in a square means, that there is exactly one Action element in the graph. Filled 
circle means, that the IsProcessed attribute of the element is set to processed, and 
empty circle means that the value of this attribute is an empty string. 

 
Figure 9 

Rewriting pattern no. 1 

In Figure 10, the E-based composition of two Process Activity Edge rules is 
shown. The cumulative LHS now contains two circles, because R1 and L2 
contained exactly one-one Action nodes, but these elements cannot be identified 
with each other. 
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Figure 10 

Composition of two patterns no. 1 rewriting rule 

In Figure 11 the E-based composition is shown after n number of rule 
applications. The cumulative LHS contains only empty circles and the cumulative 
RHS contains only filled ones. The application of the next rule results that the 
cumulative left-hand side will contain one more empty circle (one more Action 
node). 

 
Figure 11 

Composition of n+1 number of pattern no. 1 rules 

Using the notation of Definition 3.2, let *)( iAction Lnbr  be the number of Action 
elements in LHS. Every time when this rule is executed again, at least one new 
node appears in LHS of the composed rule, therefore *)( iAction Lnbr  exceeds all 

limits. Since |*|*)(0 iiAction LLnbr ≤≤ , |*| iL  also exceeds all limits. Referencing 
the Theorem 3.4, this results that the exhaustive application of the rule Process 
Activity Edge always terminates. ■ 

Lemma 4.2 The exhaustive application of rules Process Final Node, Process Join 
Node and Process Merge Node separately terminates for every valid UML activity 
diagram. 

Proof To prove Lemma 4.1, we used a pattern. The Process Activity Edge rule did 
not change the structure of the input activity diagram model in LHS, only the 
IsProcessed attribute of an element has been set to processed. Before we modified 
this attribute, to match LHS, and apply the rule, we checked that this value was an 
empty string. Nothing else specialty of the Process Activity Egde rule has not been 
exploited. Therefore the proof of Lemma 4.1 can be easily applied to the rules 
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Process Final Node, Process Join Node and Process Merge Node as well, because 
they behave similarly to rule Process Activity Edge, as presented in Section 2. ■ 

Lemma 4.3 The decision node processing part of the transformation (Box A, in 
Figure 1) terminates for every valid UML activity diagram input model. 

Proof Each rule of Box A in Figure 1 is applied not exhaustively. By following 
the directed edges of the control flow, it is obvious that there are only two ways to 
produce a loop: 

1 If the Process Decision Node Recursive Step can be successfully applied, then 
the next decision node of the control flow forwards the execution to the 
Preserve D2 and then again to the Process Decision Node Recursive Step. 
Because Preserve D2 rule does not modify anything in the model, the result of 
this loop is the same as we would apply the Process Decision Node Recursive 
Step exhaustively. 

2 The other possible loop is the following: apply Process Decision Node Step 0 
successfully, and then apply the Process Decision Node Recursive Step as 
many times as we can. Finally use the rule Decision Node Last Step, and then 
start again with the first rule. 

The first loop is equivalent to the exhaustive application of the rule Process 
Decision Node Recursive Step, therefore, we can apply the proving pattern that we 
used in Lemma 4.2, hence this loop is terminating. 

To analyze the loop number 2, we use the same notation that we have presented in 
connection with Lemma 4.1. The only modification is that the circle means a 
DecisionNode element of the graph, instead of an Action element. If we want to 
describe the rewriting rule of Process Decision Node Step 0, we can do it with the 
pattern no. 1 rule in Figure 9. 

 
Figure 12 

Rewriting pattern no. 2 

With the rewriting rule in Figure 12, we can describe the behavior of the Process 
Decision Node Recursive Step rule, because it contains exactly one DecisionNode 
element in LHS and RHS, but does not modify it. As mentioned in Section 3, with 
external causalities it is guaranteed that the rule Process Decision Node Recursive 
Step and the rule Process Decision Node Last Step matches the same 
DecisionNode element of the input model, that we have matched with the first 
Process Decision Node Step 0 rule in the loop. Therefore the composition of two 
Process Decision Node Recursive Step rules can described as in Figure 13. This 
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results that Figure 13 also presents the composition of the application of rules 
Process Decition Node Recursive Step. 

 
Figure 13 

Composition of two pattern no. 2 rewriting rules 

The pattern in Figure 12 also represents the rule Process Decision Node Last Step, 
therefore the composition of rules of the rest of the loop (all rules, except the first 
Process Decision Node Step 0 rule) can be described with pattern no 2 rule in 
Figure 12. The whole loop itself is the composition of the first rule and the rest of 
the loop, which can be seen in Figure 14. 

 
Figure 14 

Composition of a pattern no. 1 and a pattern no. 2 rule 

Similarly to the proof of lemma 4.1 now we have to produce the composition of 
pattern no 2. rules and in the same way, we can guarantee that the number of 
applications is finite and therefore the loop is terminating. 

Since both possible loop in Box A terminates, the whole control flow of the box 
itself also terminates. ■ 

Lemma 4.4 The fork node processing part of the transformation (box B, in Figure 
1) terminates for every valid UML activity diagram input model. 

Proof This lemma can be proved in the same way as lemmas 4.3, since the 
operation of Box B is the same as the operation of Box A. ■ 

Proposition 4.5 The UML to CSP transformation terminates for every valid UML 
activity diagram input model. 
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Proof Each rule, which is applied only once (the not exhaustive rules) terminates. 
Lemma 4.1 and 4.2 guarantee that the exhaustive application of each exhaustive 
rule separately terminates. Lemma 4.4 and 4.5 guarantee that the decision node 
and the fork node processing parts of the transformation terminates (Box A, and 
Box B). It is proven that the transformation is the sequence of separately 
terminating processes and therefore the whole transformation itself terminates. ■ 

Conclusions 

In this paper we have presented the analysis of a transformation from UML 
activity diagrams to CSP models. We proved that the transformation terminates 
for every valid input model and therefore it can generate CSP expressions for all 
UML activity diagrams. 
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