
Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 611

Termination Analysis of the Transformation
UML to CSP

Márk Asztalos, László Lengyel, Tihamér Levendovszky, Hassan
Charaf
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
{asztalos, lengyel, tihamer, hasssan}@aut.bme.hu

Abstract: The transformation from UML activity diagrams to CSP models is a helpful
model transformation, which can be used to analyze and verify some aspects of a UML
activity diagrams. A working solution has been developed with our tool, the Visual
Modeling and Transformation System, and in this work we formally prove that the
transformation terminates for every valid input activity diagram model, and therefore it can
be used in practice.

Keywords: model transformation, graph rewriting, termination, metamodeling, UML, CSP

1 Introduction

1.1 Motivation

Model transformation has become a focused area in model-driven research. Graph
rewriting systems and the theories related to them are widespread applied in model
transformations. Graph transformation provides a rule-based modification of
graph models.

The analysis of formal properties of transformations is important. One essential
property is the termination of a transformation. In general, it is undecidable
whether a graph rewriting system is terminating [11]. In certain cases, we can
guarantee the termination, for example if in the transformation, all rules are
applied only once and no loop is available. We can also define constraints on the
input models. Our aim is to guarantee that the transformation terminates after
finite number of steps for every valid input model.

M. Asztalos et al.
Termination Analysis of the Transformation UML to CSP

 612

The Unified Modeling Language (UML) [1] is the de facto standard of software
design. UML activity diagrams are used for example to describe the low-level
behavior of software components and to model business processes.

Communicating Sequential Processes (CSP) [2] is a formal language for
describing patterns of interaction in concurrent systems and it is supported by a
mathematical theory.

To analyze the behavior of a UML activity diagram and to verify some aspects of
it, we need a formal semantic [3], the CSP is appropriate for this function. This is
why a transformation, which converts UML activity diagrams to a CSP models is
very helpful.

In this work, we use our transformation, which generates CSP models from UML
activity diagrams and prove that this transformation terminates, and therefore, this
can be applied for any valid UML activity diagram input model.

1.2 Problem Statement

To use CSP as a semantic domain for activity diagrams we need a precisely
defined mapping from diagrams to CSP models. In [4], the transformation method,
and the metamodels of CSP models and UML activity diagrams are presented.

Our group in the Department of Automation and Applied Informatics has
developed Visual Modeling and Transformation Systems (VMTS), a software tool
that is able to design and run transformations. This environment is based on graph
rewriting rules and metamodels. We published a solution for the UML to CSP
transformation [5]. (To better understand the transformation itself, please read [5]
or follow the steps in the tutorial [6].) The termination of this transformation has
not yet been formally proved.

1.3 Structure of Paper

The rest of the paper is organized as follows: in Section 2, our UML to CSP
transformation and the rules of the transformation are detailed. In Section 3, some
important definitions and theorems are summarized, and finally termination
analysis is presented in Section 4.

2 Transformation

The control flow of the UML to CSP transformation is shown in Figure 1. VMTS
uses the notation of UML activity diagrams to describe transformations. In the

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 613

control flow, rules, directed edges and decision nodes can be found. There are two
important properties, which cannot be seen in the figure:

1 The application of Process Activity Edge rule is exhaustive. This means that
the rule is executed repeatedly while it is possible to apply. The transformation
proceeds to the next rule only when it cannot be matched with the input model,
or the execution was unsuccessful. Process Final Node, Process Join Node and
Process Merge Node rules are also exhaustive rules.

2 Each decision node of the transformation control flow is left by two edges. The
transformation proceeds to the edge with the label success if the application of
the previous rule succeeded. If the previous rule could not be matched, or the
application was unsuccessful, then the transformation proceeds to the edge
with the label failure.

Figure 1
Transformation control flow

2.1 Metamodels

VMTS uses metamodels to validate the LHS and RHS patterns of the rules, and
the input model as well. Metamodels of UML activity diagrams and CSP models
are presented in [4].

M. Asztalos et al.
Termination Analysis of the Transformation UML to CSP

 614

2.2 Transformation Rules

In VMTS, model processing is based on graph transformations [9]. The elements
of a transformation are graph rewriting rules. A rewriting rule consists of a left-
hand side (LHS) and a right-hand side (RHS) pattern. LHS describes the part of
the model we are searching for, RHS defines the replacement pattern.

In Figure 2, the Process Initial Node rule is shown. In RHS, a CspContainer
element can be seen, which cannot be part of the activity diagram model because
it is a CSP element. This is a newly created element, which will be placed into the
output CSP model. In other rules, CSP model elements appear in LHS as well, but
these are also elements of the output CSP model.

Figure 2
Rule Process Initial Node

Constraints can be defined for any elements of the LHS, or RHS using Object
Constraint Language (OCL) [10]. Every activity diagram element has an attribute
named IsProcessed. During the application of the rules we change the value of this
attribute, and we define constraints in LHS to guarantee that certain elements
cannot be processed twice with the same rule.

In Figure 3, the Process Activity Edge is shown. When the LHS of the rule is
matched, a constraint is checked if the value of the IsProcessed attribute owned by
the Action element is an empty string. If we apply the rule successfully, we change
this value to ‘processed’ so this rule cannot be matched again with the same
Action element.

Figure 3

Rule Process Activity Edge

In Figure 4, the Process Final Node rule is shown. We use the IsProcessed
attribute of the FinalNode element of the LHS, as described before.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 615

Figure 4

Rule Process Final Node

In Figure 5, the Process Join Node rule is presented. The value of IsProcessed
attribute of the JoinNode of LHS is checked and modified during the application
of the rule in the same way as in the two previous rules.

Figure 5

Rule Process Join Node

In Figure 6, the Process Merge Node rule is shown. We check and modify the
IsProcessed attribute of the MergeNode element of LHS.

Figure 6

Rule Process Merge Node

The rules, the name of which starts with the word Preserve are needed because
some characteristics of the VMTS control flow language, but they do not modify,
create or delete any elements.

In Box A in Figure 1, the processing of the decision nodes of the input activity
diagram is realized with a complex control flow, with more than one rule. The

M. Asztalos et al.
Termination Analysis of the Transformation UML to CSP

 616

Process Decision Node Step 0 (Figure 7/a) matches a decision node of the input
model. When we apply this rule we check and modify the IsProcessed attribute of
the DecisionNode element of LHS. The Process Decision Node Recursive Step
(Figure 7/b) processes an edge which leaves the decision node in each step. We
check and modify the IsProcessed attribute of the ActivityEdge of LHS. The
Process Decision Node Last Step (Figure 7/c) processes the last edge, the guard
condition of which is else.

Figure 7

Rules Process Decision Node Step 0 (a), Process Decision Node Recursive Step (b), Process Decision
Node Last Step (c)

With external causalities [5], we guarantee that after the successful application of
the Process Decision Node Step 0 rule, the Process Decision Node Recursive Step
rule and the Process Decision Node Last Step rule matches the same
DecisionNode element in LHS that we matched in the first rule.

The processing of the fork nodes (Box B in Figure 1) operates in the same way as
the processing of the decision nodes, the rules are shown in Figure 8.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 617

 .
Figure 8

Rules Process Fork Node Step 0 (a), Process Fork Node Recursive Step (b), Process Fork Node Last
Step (c)

3 Backgrounds
To describe graph transformations and graph rewriting rules, we use the
definitions and theorems presented in [8]. Note that the theorems in the referenced
documents are proven to injective matches only. Here we also use the formalism
of [7]. In the following we summarize some important definitions and a theorem.

Definition 3.1 Let ,...)2,1(=ipi be a sequence of graph productions and

))*,,((1+iii eeE a sequence of E-dependency relations.

Compose the sequence of E-based compositions *)**(* iiii RKLp →←=
where 11* pp = and nEEEn pppp

n
+++= ...)(*

21 21 .

Definition 3.2 A cumulative LHS series of a production sequence is the graphs
series *iL consisting of the left hand side graphs of *np .

Definition 3.3 The cumulative LHS size series of a production sequence is the
nonnegative integer series |*| iL .

Theorem 3.4 A graph transformation terminates if for all infinite cumulative LHS
sequence of the graph productions created from the members of the productions of
the system, it holds that

∞=
∞→

|*|lim ii
L .

(We assume finite input graphs and injective matches.)

M. Asztalos et al.
Termination Analysis of the Transformation UML to CSP

 618

4 Termination Analysis

In connection with the following analysis three notes have to be made:

1 VMTS uses finite input graphs and injective matches, so definitions and the
theorem in Section 3 can be applied.

2 When we analyze the rules we only work with the model elements which come
from the activity diagrams. In LHS and RHS the elements of the output CSP
models also appear, but these parts only restrict the application of the rules.

3 During the whole transformation, we do not modify the structure of the input
activity diagram except the value of the IsProcessed attribute of some
elements.

To prove the termination of the transformation UML to CSP, we use the following
lemmas.

Lemma 4.1 The exhaustive application of the rule Process Activity Edge
terminates for every valid UML activity diagram input model.

Proof Our aim is to prove that we cannot apply the Process Activity Edge rule
infinite number of times for any finite input UML activity diagrams.

In Figure 9, the rule itself is presented. Squares represent the graphs of LHS, RHS
and the interface graph (K), and circles represent the Action elements. One circle
in a square means, that there is exactly one Action element in the graph. Filled
circle means, that the IsProcessed attribute of the element is set to processed, and
empty circle means that the value of this attribute is an empty string.

Figure 9

Rewriting pattern no. 1

In Figure 10, the E-based composition of two Process Activity Edge rules is
shown. The cumulative LHS now contains two circles, because R1 and L2
contained exactly one-one Action nodes, but these elements cannot be identified
with each other.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 619

Figure 10

Composition of two patterns no. 1 rewriting rule

In Figure 11 the E-based composition is shown after n number of rule
applications. The cumulative LHS contains only empty circles and the cumulative
RHS contains only filled ones. The application of the next rule results that the
cumulative left-hand side will contain one more empty circle (one more Action
node).

Figure 11

Composition of n+1 number of pattern no. 1 rules

Using the notation of Definition 3.2, let *)(iAction Lnbr be the number of Action
elements in LHS. Every time when this rule is executed again, at least one new
node appears in LHS of the composed rule, therefore *)(iAction Lnbr exceeds all

limits. Since |*|*)(0 iiAction LLnbr ≤≤ , |*| iL also exceeds all limits. Referencing
the Theorem 3.4, this results that the exhaustive application of the rule Process
Activity Edge always terminates. ■

Lemma 4.2 The exhaustive application of rules Process Final Node, Process Join
Node and Process Merge Node separately terminates for every valid UML activity
diagram.

Proof To prove Lemma 4.1, we used a pattern. The Process Activity Edge rule did
not change the structure of the input activity diagram model in LHS, only the
IsProcessed attribute of an element has been set to processed. Before we modified
this attribute, to match LHS, and apply the rule, we checked that this value was an
empty string. Nothing else specialty of the Process Activity Egde rule has not been
exploited. Therefore the proof of Lemma 4.1 can be easily applied to the rules

M. Asztalos et al.
Termination Analysis of the Transformation UML to CSP

 620

Process Final Node, Process Join Node and Process Merge Node as well, because
they behave similarly to rule Process Activity Edge, as presented in Section 2. ■

Lemma 4.3 The decision node processing part of the transformation (Box A, in
Figure 1) terminates for every valid UML activity diagram input model.

Proof Each rule of Box A in Figure 1 is applied not exhaustively. By following
the directed edges of the control flow, it is obvious that there are only two ways to
produce a loop:

1 If the Process Decision Node Recursive Step can be successfully applied, then
the next decision node of the control flow forwards the execution to the
Preserve D2 and then again to the Process Decision Node Recursive Step.
Because Preserve D2 rule does not modify anything in the model, the result of
this loop is the same as we would apply the Process Decision Node Recursive
Step exhaustively.

2 The other possible loop is the following: apply Process Decision Node Step 0
successfully, and then apply the Process Decision Node Recursive Step as
many times as we can. Finally use the rule Decision Node Last Step, and then
start again with the first rule.

The first loop is equivalent to the exhaustive application of the rule Process
Decision Node Recursive Step, therefore, we can apply the proving pattern that we
used in Lemma 4.2, hence this loop is terminating.

To analyze the loop number 2, we use the same notation that we have presented in
connection with Lemma 4.1. The only modification is that the circle means a
DecisionNode element of the graph, instead of an Action element. If we want to
describe the rewriting rule of Process Decision Node Step 0, we can do it with the
pattern no. 1 rule in Figure 9.

Figure 12

Rewriting pattern no. 2

With the rewriting rule in Figure 12, we can describe the behavior of the Process
Decision Node Recursive Step rule, because it contains exactly one DecisionNode
element in LHS and RHS, but does not modify it. As mentioned in Section 3, with
external causalities it is guaranteed that the rule Process Decision Node Recursive
Step and the rule Process Decision Node Last Step matches the same
DecisionNode element of the input model, that we have matched with the first
Process Decision Node Step 0 rule in the loop. Therefore the composition of two
Process Decision Node Recursive Step rules can described as in Figure 13. This

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 621

results that Figure 13 also presents the composition of the application of rules
Process Decition Node Recursive Step.

Figure 13

Composition of two pattern no. 2 rewriting rules

The pattern in Figure 12 also represents the rule Process Decision Node Last Step,
therefore the composition of rules of the rest of the loop (all rules, except the first
Process Decision Node Step 0 rule) can be described with pattern no 2 rule in
Figure 12. The whole loop itself is the composition of the first rule and the rest of
the loop, which can be seen in Figure 14.

Figure 14

Composition of a pattern no. 1 and a pattern no. 2 rule

Similarly to the proof of lemma 4.1 now we have to produce the composition of
pattern no 2. rules and in the same way, we can guarantee that the number of
applications is finite and therefore the loop is terminating.

Since both possible loop in Box A terminates, the whole control flow of the box
itself also terminates. ■

Lemma 4.4 The fork node processing part of the transformation (box B, in Figure
1) terminates for every valid UML activity diagram input model.

Proof This lemma can be proved in the same way as lemmas 4.3, since the
operation of Box B is the same as the operation of Box A. ■

Proposition 4.5 The UML to CSP transformation terminates for every valid UML
activity diagram input model.

M. Asztalos et al.
Termination Analysis of the Transformation UML to CSP

 622

Proof Each rule, which is applied only once (the not exhaustive rules) terminates.
Lemma 4.1 and 4.2 guarantee that the exhaustive application of each exhaustive
rule separately terminates. Lemma 4.4 and 4.5 guarantee that the decision node
and the fork node processing parts of the transformation terminates (Box A, and
Box B). It is proven that the transformation is the sequence of separately
terminating processes and therefore the whole transformation itself terminates. ■

Conclusions

In this paper we have presented the analysis of a transformation from UML
activity diagrams to CSP models. We proved that the transformation terminates
for every valid input model and therefore it can generate CSP expressions for all
UML activity diagrams.

References

[1] Object Management Group: Unified Modeling Language, version 2.1.1
(2006), http://www.omg.org/technology/documents/formal/uml.htm

[2] Hoare, C.A.R.: Communicating Sequential Processes, Prentice Hall
International Series in Computer Science, Prentice Hall (April 1985)

[3] D. Harel, B. Rumpe: Modeling Languages: Syntax, Semantics and all that
Stuff (or, What’s the Semantics of “Semantics”?) (July 18, 2004)

[4] D. Bisztray, K. Ehrig R. Heckel: Case Study: UML to CSP
Transformation, AGTIVE 2007 Graph Transformation Tool Contest

[5] M. Asztalos, L. Lengyel, T. Levendovszky, H. Charaf: Graph
Transformation Contest - UML to CSP Transformation AGTIVE 2007
Graph Transformation Tool Contest

[6] M. Asztalos: UML to CSP Transformation with VMTS,
http://vmts.aut.bme.hu

[7] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer: Fundamentals of Algebraic
Graph Transformation. Springer, 2006

[8] T. Levendovszky, U. Prange, H. Ehrig.: Termination Criteria for DPO
Transformations with Injective Matches, Graph Transformation for
Verification and Concurrency, 2006

[9] G. Rozenberg.: Handbook on Graph Grammars and Computing by Graph
Transformation, Foundations, Vol. 1 World Scientific, 1997

[10] Object Management Group: UML 2.0 Object Constraint Language
Specification, http://www.omg.org/

[11] D. Plump: Termination of graph rewriting is undecideable, Fundamental
Informatica, Vol. 33(2), pp. 201-209, 1998

