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1 Introduction

In the paper [39] there were presented many different applications of generalized
mathematical analysis, so called pseudo-analysis, see [33, 36]. In this paper we
present two recent applications of the pseudo-analysis.

First application is related to random sets. Kendall ([17]) and Matheron
([23]) laid down the theoretical foundations of the theory of random sets. This
theory is based on probability measures on the space of closed subsets of lo-
cally compact Hausdorff and separable space endowed with hit-or-miss topol-
ogy. Random closed sets has been introduced as generalizations of random
variables, i.e., random closed sets are random elements on the space of closed
subsets. The mathematical foundation of random closed sets is based on Cho-
quet’s capacity theorem ([8]) and the special properties of random closed sets
follow from the topological structure of the space of closed sets. Random set
theory play important role in image processing, mathematical morphology, ex-
pert system, theoretical statistic, etc., see [15, 16, 23, 24, 25, 26, 45]. A sequence
of probability measures {Pn}n∈N converges weakly to a probability measure P
if
∫
fdPn →

∫
fdP for all continuous, bounded real functions f . Several con-

ditions equivalent to the weak convergence are provided by the theorem of
Portmanteau ([3]). While the classical case considers weak convergence of se-
quences of probability measures, the main result presented here, see [14], is a
theorem of Portmanteau type for sequences of capacity functionals for sequence
of random closed sets.

The second recent application of the pseudo-analysis is related to the the-
ory of Perona and Malik nonlinear partial differential equation, which is funda-
mental in image processing ([1, 5, 43]). In this model with partial differential



equation a restored image can be seen as a version of the initial image at a
special scale. We have proved for this equation the pseudo linear superposition
principle [41].

2 Pseudo-operations and the general pseudo in-
tegral

Real operations used in this paper and non-additive measures are based on
[2, 9, 18, 21, 33, 36]. Let ≤ be a total order on [0,∞].

Definition 1 A binary operation ⊕ : [0,∞]2 → [0,∞] such that the following
conditions are satisfied:

(A1) a⊕ b = b⊕ a (commutativity)

(A2) a ≤ a′ ∧ b ≤ b′ ⇒ a⊕ b ≤ a′ ⊕ b′ (monotonicity)

(A3) (a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity)

(A4) a⊕ 0 = a (neutral element)

(A5) an → a ∧ bn → b⇒ (an ⊕ bn)→ a⊕ b (continuity)

is called pseudo-addition.

Definition 2 For a given pseudo-addition ⊕ the corresponding pseudo-multiplication
is a binary operation � : [0,∞]2 → [0,∞] such that the following conditions
are satisfied

(M1) a� b = b� a (commutativity)

(M2) a� 0 = 0 (zero element)

(M3) a ≤ a′ ∧ b ≤ b′ ⇒ a� b ≤ a′ � b′ (monotonicity)

(M4) (a⊕ b)� c = (a� c)⊕ (a� c) (distributivity)

(M5) a� 1 = a (unit element)

(M6) a� (b� c) = (a� b)� c (associativity)

(M7) an → a ∧ bn → b⇒ (an � bn)→ a� b (continuity)

The algebraic structure ([0,∞],⊕,�) is a semiring, see [11, 20]. Let A be a
σ-algebra of subsets of non-empty abstract space Ω and m : A → R non-
decreasing set function with m(∅) = 0. Let M be a family of A-measurable
functions f : Ω → [0,∞]. A measurable function s : Ω → [0,∞] is called a
simple function if its range is finite. Let Rang(s) = {a1, a2, . . . , ak} such that



0 < a1 < a2 < . . . < ak, and Ai ∩ Aj = ∅ for i 6= j. The standard ⊕-step
representation of a simple function s is

s =
k⊕
i=1

b(c∗i , C
∗
i ) (1)

where c∗1 = a1, c
∗
2 = a2 	 a1, . . . , c

∗
m = am 	 am−1, C

∗
i =

m⋃
j=i

Ai and b : Ω →

[0,∞] is a basic function given by

b(c∗i , C
∗
i )(ω) =

{
c∗i , ω ∈ C∗i ,

0, ω /∈ C∗i .

Specially, for c∗i = 1 and A ∈ A, the basic function reduces to the pseudo
characteristic function χA : Ω→ {0,1} given by

χA(ω) =

{
1, ω ∈ A,

0, ω /∈ A.

Definition 3 (a) The pseudo integral of a simple function s with the stan-
dard ⊕-step representation (1) is given by∫ ⊕

s� dm =
m⊕
i=1

c∗i �m(C∗i ).

(b) The pseudo integral of a function f ∈M is∫ ⊕
f � dm = sup

{∫ ⊕
s� dm : s ∈ Sf

}
,

where Sf is a family of all simple function s such that s ≤ f.

3 Random sets

For the purposes of presented generalization, the classical Lebesgue integral
had been substituted with more general one, known as the pseudo integral ([2]).
General pseudo integral is based on pseudo-addition and pseudo-multiplication,
which are generalizations of the classical operations, and monotone set function
(non-additive measure), see [33, 36].

We give some basic notions from theory of random sets ([23, 27, 28, 29, 30]).
Collections of closed, open and compact subset of R are denoted with F , O
and K, respectively. Of the special importance for the theory of random sets
is the collection of closed sets F , as well as its sub-collections FG, G ∈ O and
FK , K ∈ K defined in the following way:

FG = {F ∈ F : F ∩G 6= ∅}, G ∈ O



FK = {F ∈ F : F ∩K = ∅}, K ∈ K.

Collections {FG : G ∈ O} and {FK : K ∈ K} generate a topology τ(F)
on F (hit-or-miss-topology). F with the hit-or-miss topology is a compact,
separable and Hausdorff space ([23]). Taking countable unions and intersections
of the open sets of the topological space (F , τ(F)), a σ-field Σ(F) is generated
in F . We have by [23, 27, 28]

Definition 4 Random closed set S is a measurable mapping from the proba-
bility space (Ω,A,P) into the measurable space (F ,Σ(F)).

Random closed set S generates probability distribution PS in the following
way

PS(A) = P({ω ∈ Ω : S(ω) ∈ A}) = PS(S ∈ A), for all A ∈ Σ(F).

Probability distribution PS of the random closed set S is determined by
functional TS defined on the space of compact subsets of R.

Definition 5 The capacity functional TS : K → [0, 1] of a random closed set
S for K ∈ K is defined by

TS(K) = PS(S ∈ FK) = PS(S ∩K 6= ∅). (2)

Although the capacity functional TS given by (2) is defined only on K, it can
be extended onto the family P of all subsets of R, in the following way

TS
∗(G) = sup{TS(K) : K ∈ K, K ⊂ G}, G ∈ G

and
TS
∗(M) = inf{TS

∗(G) : G ∈ G, M ⊂ G}, M ∈ P.

A subset M ⊂ R is called capacitable if the following holds

TS(M) = sup{TS(K) : K ∈ K,K ⊂M}.

Obviously, TS
∗ coincides with TS on K, and all Borel sets B are capacitable

([23, 28]). We have by [28] the following theorem.

Theorem 6 (i) TS
∗(K) = TS(K) for all K ∈ K.

(ii) For each Borel set B it holds TS
∗(B) = sup{TS(K) : K ∈ K,K ⊂ B}.

Further on, TS
∗(M) for all capacitable set M will be denoted with TS(M).

For a given random closed set S the corresponding capacity functional will
be denoted by T. Capacity functionals of the random closed sets are uniquely
characterized by the following proposition (see [23, 28, 29]).

Proposition 7 (i) For all K ∈ K the inequality 0 ≤ T(K) ≤ 1 and T(∅) = 0
hold.



(ii) For all random closed sets and for all K1,K2 ∈ K holds

K1 ⊆ K2 ⇒ T(K1) ≤ T(K2).

(iii) The capacity functional is upper semi-continuous, i.e.,

Kn ↓ K ⇒ T(Kn) ↓ T(K), for Kn ∈ K, n = 1, 2, . . . , K ∈ K.

We introduce the following generalization ([14]).

Definition 8 A sequence of capacity functionals {Tn}n∈N (⊕,�)-weak con-
verges (shortly, pseudo-weak converges) to capacity functional T if and only if
for each continuous, bounded function f : R→ [0,∞] holds

lim
n→∞

∫ ⊕
f � dTn =

∫ ⊕
f � dT.

The following three theorems generalize the classical Portmantea-u theorem
([3]).

Theorem 9 If a sequence of capacity functionals {Tn}n∈N pseudo-weak con-
verges to capacity functional T, then

lim sup
n

Tn(F ) ≤ T(F )

for all closed sets F ⊆ R.

Theorem 10 If a sequence of capacity functionals {Tn}n∈N pseudo-weak con-
verges to capacity functional T, then

lim inf
n

Tn(G) ≥ T(G)

for all open set G.

Theorem 11 If for all closed sets F holds lim sup
n

Tn(F ) ≤ T(F ) and for all

open sets G holds lim inf
n

Tn(G) ≥ T(G), then sequence of capacity functionals

{Tn}n∈N pseudo-weak converges to capacity functional T.

4 Nonlinear partial differential equations

An image u is embedded in an evolution process, denoted by u (t, ·). The
original image is taken at time t = 0, u (0, ·) = u0 (·) . The original image is
then transformed, and this process can be written in the form
∂u
∂t (t, x) + F

(
x, u(t, x),∇u (t, x) ,∇2u (t, x)

)
= 0 in Ω. Some possibilities for



F to restore an image are considered in [1]. PDE-methods for restoration is in
general form:{

∂u
∂t (t, x) + F

(
x, u(t, x),∇u (t, x) ,∇2u (t, x)

)
= 0 in (0, T )× Ω,

∂u
∂N (t, x) = 0 on (0, T )× ∂Ω, u (0, x) = u0 (x) ,

(3)

where u (t, x) is the restored version of the initial degraded image u0 (x). The
idea is to construct a family of functions {u (t, x)}t>0 representing successive
versions of u0 (x). As t increases u (t, x) changes into a more and more simplified
image. We would like to attain two goals. The first is that u (t, x) should
represent a smooth version of u0 (x), where the noise has been removed. The
second, is to be able to preserve some features such as edges, corners, which
may be viewed as singularitis. The basic PDE in image restoration is the heat
equation: {

∂u
∂t (t, x)−∆u (t, x) = 0, t ≥ 0, x ∈ R2,

u (0, x) = u0 (x) .
(4)

We consider that u0 (x) is primarily defined on the square [0, 1]2. We extend it
by symmetry to C = [−1, 1]2, and then on all R2, by periodicity. This way of
extending u0 (x) is classical in image processing. If u0 (x) is extended in this
way and satisfies in addition

∫
C
|u0 (x)| dx < +∞, we will say that u0 ∈ L1

# (C)
(see [1]). Solving (4) is equivalent to carrying out a Gaussian linear filtering,
which was widely used in signal processing. If u0 ∈ L1

# (C), then the explicit
solution of (4) is given by

u(t, x) =
∫

R2
G√2t (x− y)u0 (y) dy =

(
G√2t ∗ u0

)
(x) ,

where Gσ (x) denotes the two-dimensional Gaussian kernel

Gσ (x) =
1

2πσ
e−

|x|2

2σ2

The heat equation has been (and is) successfully applied in image processing
but it has some drawback. It is too smoothing and because of that edges can be
lost or severely blurred. In [1] authors consider models that are generalizations

of the heat equation. The domain image will be a bounded open set Ω of R2.
The following equation is initially proposed by Perona and Malik [43]:

∂u
∂t = div

(
c
(
|∇u|2

)
∇u
)

in (0, T )× Ω,
∂u
∂N = 0 on (0, T )× ∂Ω,
u (0, x) = u0 (x) in Ω

(5)

where c : [0,∞) → (0,∞) . If we choose c ≡ 1, then it is reduced on the heat
equation. If we assume that c (s) is a decreasing function satisfying c (0) = 1
and lims→∞ c (s) = 0, then inside the regions where the magnitude of the



gradient of u is weak, equation (5) acts like the heat equation and the edges
are preserved. For each point x where |∇u| 6= 0 we can define the vectors
N = ∇u

|∇u| and T with T · N = 0, |T | = 1. For the first and second partial
derivatives of u we use the usual notation ux1 , ux2 , ux1x1,... We denote by
uNN and uTT the second derivatives of u in the T -direction and N -direction,
respectively:

uTT = T t∇2uT =
1
|∇u|2

(
u2
xuyy + u2

yuxx − 2uxuyuxy
)
,

uNN = N t∇2uN =
1
|∇u|2

(u2
xuxx + u2

yuyy + 2uxuyuxy).

The first equation in (5) can be written as

∂u

∂t
(t, x) = c

(
|∇u (t, x)|2

)
uTT + b

(
|∇u (t, x)|2

)
uNN , (6)

where b(s) = c(s) + 2sc′(s). Therefore, (6) is a sum of a diffusion in the
T -direction and a diffusion in the N -direction. The function c and b act as
weighting coefficients. Since N is normal to the edges, it would be preferable
to smooth more in the tangential direction T than in the normal direction.
Because of that we impose

lim
s→∞

b(s)
c(s)

= 0 or lim
s→∞

sc′(s)
c(s)

= −1
2

(7)

If c(s) > 0 with power growth, then (7) implies that c(s) ≈ 1/
√
s as s → ∞.

The equation (5) is parabolic if b(s) > 0. The assumptions imposed on c (s)
are 

c : [0,∞)→ (0,∞) decreasing,
c(0) = 1, c(s) ≈ 1√

s
as s→∞,

b(s) = c(s) + 2sc′(s) > 0.
(8)

Often used function c(s) satisfying (8) is c(s) = 1√
1+s

. Because of the behavior
c(s) ≈ 1/

√
s as s→∞, it is not possible to apply general results from parabolic

equations theory. Framework to study this equation is nonlinear semigroup
theory (see [1, 4, 6]).

We have proved in [41] that the pseudo-linear superposition principle holds
for Perona and Malik equation.

Theorem 12 If u1 = u1 (t, x) and u2 = u2 (t, x) are solutions of the equation

∂u

∂t
− div

(
c
(
|∇u|2

)
∇u
)

= 0, (9)

then u1 ⊕ u2 is also a solution of (9) on the set

D = {(t, x) |t ∈ (0, T ) , x ∈ R2, u1 (t, x) 6= u2 (t, x)},

with respect to the operation ⊕ = min .



The obtained results will serve for further investigation of the weak solutions
of the equation (9) in the sense of Maslov [19, 22, 36] and Gondran [12, 13], as
well as their important applications.

Acknowledgment

The author would like to thank for the support in part by the project MNZŽSS
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