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Abstract: Present paper continues the researches on cognitive system design. The goal of 
the paper is to illustrate the variety of models which can be constructed using the Bayesian 
plausible reasoning theory. The first case study develops a classical differential model into 
a Bayesian model. The second case study solves a geometry problem by plausible 
reasoning. The third case study models the human reasoning presented by the famous story 
of Sun Tzu: ‘Advance to Chengang by a hidden path’. 
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1 Introduction 

Present paper continues the author’s researches on cognitive system design. These 
researches have been started by a phenomenological analysis of AI collocation 
and have continued by researches on modeling with Bayesian plausible reasoning. 
The goal of this paper is to illustrate the variety of phenomenon which can be 
modeled using the mentioned theory. For this reason we have structured our paper 
in four parts. The presentation starts with a briefly introduction of the plausible 
reasoning theoretical background. The second part illustrates the transformation of 
a classical differential model into a Bayesian model. The third part represents a 
plausible reasoning solution of a geometrical problem. In the end we have tried to 
model a human reasoning example. More precisely, our intention was to explain 
(by modeling) the famous story of Sun Tzu: ‘Advance to Chengang by a hidden 
path’. 

The principles of Plausible Reasoning: 

1 The representation of degree of plausibility is given by the plausibility 
function: 

[ ]10: →Φp ; yXAp =)|(  (1) 
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where: Θ is a set of sentences; )|( XAp  is a continuous and monotonic function 
which associates a particularly degree of truth for the sentence A in the 
condition that sentence X is true; 

2 The consistence of the commune sense requires the following property for the 
p function 

)|()|()|( AXBpXApXABp =  (2) 

1)|()|( =¬+ BApXAp  (3) 

)|()|()|()|( XABpXBpXApXBAp −+=+  (4) 

ni
n

XAp i ...11)|( ==  (5) 

where { } niiA ...1| =  is a complete set of mutual excusive sentence 

Some comments are necessary: 

• by consistence we mean: 

• every possible way of reasoning a sentence must lead to the same result; 

• the equivalent sentences have an equal degree of plausibility; 

• in order to obtain the degree of plausibility for a sentence we must take into 
account all the evidence available; 

• )|( XABp  means the plausibility of sentence A and B in the condition 
that sentence X is true; 

• A¬  means non A; 

• )|( XBAp +  means the plausibility of sentence A or B in the condition 
that sentence X is true; 

Theoretical results: 

Analyzing the mentioned postulates, theoretical results can be deduced. From the 
beginning we will mention that because the probability function has the same 
properties (1…5) it can be accepted that the plausibility function is synonymous 
with the probability function. This is the only reasons that theoretical results from 
probability theory can be transferred to the theory of plausible reasoning [7]. 

We will resume presenting the Bayesian theorem which can easily deduce from 
(1-5). If we name by d the evidence of an experiment and by hi=1…n a set of mutual 
exclusive hypotheses the Bayesian theorem tells us that the plausibility of 
hypothesis hi in the condition of evidence d is equal with the plausibility of 
hypothesis hi multiplied by the plausibility of evidence d in the condition that 
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hypothesis hi is true and divided by the sum of the same product made for all the 
hypotheses of the set. 

)|()(
)|()()|(

...1
k

nk
k

i
ii hdphp

hdphpdhp
∑
=

=  (6) 

The plausibility of hypothesis hi in the condition of evidence d is named the a 
posteriori knowledge, the plausibility of hypothesis hi is named the a priori 
knowledge and the plausibility of evidence d in the condition that hypothesis hi is 
trough is named the likelihood. The sum from the denominator is named the 
marginalization sum. 

In order to converge to the model construction we will link this theoretical result 
to the Bayesian filter [2]. 

2 The First Case Study 

The first case study transforms a classical differential model into a Bayesian 
model. The main achievement of this transformation is the possibility to associate 
at the computed output the plausibility of this result. In this way we can associate 
to the output quantity the quality of the degree of truth (see Figure 1a) 

In order to exemplify the mentioned theoretical results we will consider the case 
of a mobile robot which modifies his state (position) and – from time to time – 
make observations (measure his position), see Figure 1b. 

 
a) 

 
b) 

Figure 1 
The mobile robot 

The dynamic model of the robot is very simple (the robot has a constant speed): 

Δ+= −1kk xx  (7) 

where: kx  is the position of the robot. 
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We know that this model is only on approximation of the reality and from moment 
two developments – knowledge improvements – are possible: 

• developing our model eventual by adaptation: adjust the apropriate value of 
Δ or introduce new parameters; 

• constructing the Bayesian filter over this model. 

We have chosen the second possibility which can be mathematical described by 
the following equations 

est
k

est
k xx π+=  (8) 

where: est
kx  is the outputs estimations; kx is the model output; πest is the model 

perturbations. 

We don’t know a priori the model perturbation but we can obtain, by experiments, 
the statistical distribution of πes: p(πest). This distribution accomplishes (1) so we 
can define the estimation plausibility like the degree of truth for the following 
sentence: ‘the estimated output k for our model is est

kx ’. 

From (8) we have: 

)()( k
est
k

est xxpp −=π  (9) 

We must note that using the model we will obtain the state k from state k-1 so we 
can rewrite (9) 

)|()()( 1−≡−= k
est
kk

est
k

est xxpxxpp π  (10) 

Using the Bayesian rule (6) we can write: 

∑
−

−−∝
1

)|()()( 11
kx

k
est
kk

est
k xxpxpxp  (11) 

where: )( est
kxp  is the plausibility of the output estimation; )( 1−kxp  is the 

plausibility of state xk-1; )|( 1−k
est
k xxp  is the plausibility of the estimation when we 

know the state xk-1;∝  means proportional. 

If during locomotion we measure (make observations), we can describe this 
process in the following mathematical form: 

meaest
k

mes
k xx π+=  (12) 

where: mes
kx is the output measurement; meaπ is the measurement perturbation. 

Once again we don’t know a priori the value of the measurement perturbation but 
if we experiment our sensor we can obtain a statistical distribution of these values. 
We can write: 
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Using (6) we obtain: 

)|()()( est
k
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k
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k

mes
k xxpxpxp ∝  (14) 

If we use normalized distribution we can transform (11) and (14) in equations. 

For the purpose of the Bayesian filter constructing we must define: 

• variable definition: 

{ } { }nkkx ,...0∈ the system states are the position of the robot 

{ } { }nk
mes
kx ,...0∈ we will measure the position; 

• decomposition 

∏
=

−=
t

i

est
k

mes
kk

est
k

mea
n

meaest
n

est xxpxxpxxxxp
0

111 )|()|(),...,,...(  (15) 

• initial knowledge: 

• the initial state distribution, is obtained after experiments, in this case we 
have chosen the following Gaussian distribution; 
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• the transition model from state k-1 to state k, is presented in (12), the 
mathematical form of this distribution can be obtained from experimental 
measurement, once again we have chosen a Gaussian distribution: 
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• the sensor model: the mathematical form of this distribution can be obtained 
from experimental measurement, once again we have chosen a Gaussian 
distribution 
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• the question is the plausibility of the each state when we know the transition 
plausibility and the measurement (sensor) plausibility; in order to compute 
this results we have used (11) and (14): 
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Figure 2 

The initial state 
Figure 3 

Transitions without observations 

The response is a distribution for each k=0…n. This distribution has a maximum 
value which is the most plausibile answer to the question. More precisly, each 
itteration we obtaine a 2 component information: the most plausible answer (the 
robot position) and the value of its plausibility. Even the initial data are not crispy 
because we must admit that we don’t know with precision this data (see Figure 2). 

The robot has several state transition and no observations are made during this 
transitions. Simulation results are presented in Figure 2. If we analyze this result 
the main conclusion is that even the translation value – according to (7) – remains 
constant, the degree of plausibility has decreased continuously from translation to 
translation. This means that the degree of truth decrees continuously.This is an 
obvious situation, because a scientist has already the feeling that using repeatedly 
a model the degree of confidence will decrease. In this case the benefit is that we 
can compute this decreasing and of course we can take decisions after these 
results. 

If the robot performs several observations – without performing any transition. In 
Figure 4 where we have presented the results of this simulation we can see that the 
degree of plausibility increases continuously and converges to value 1 (absolute 
trust). 

In Figure 5 two particular situations are compared. There are two observations 
which start from the same state. In the first case, when the observation reproduces 
the value of the state, we will obtain a bigger rising. At contrary, in the second 
case there is a difference between the observation and the state. This difference 
will rule to a smaller degree of truth. 

After these results the conclusion is that we can impose a minimum value of truth 
and perform observations only if we are below of this value. This is a more 
realistic strategy which is presented in Figure 5. The minimum truth value is 0.1. 
We have started from 0.18 and after five transitions we are below this value. In 
this moment we have performed an observation which increased the confidence 
value to 0.22. 
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Figure 4 

Two observation (.-.- and ---) which starts from 
the same state (-) 

Figure 5 
Increasing the plausibility by several observations 

3 The Second Case Study 

The second case study solves a geometry problem by using plausible reasoning. 
The problem that we intend to solve is the following: 

Problem: If ABC is an isosceles triangle, ACM ∈  and MCAM =  then 
ACBM ⊥ , a priori we know that if ABC is an isosceles triangle and 

ACBM ,, ⊥¬  then MCAM ≠  

If we will rewrite the problem by using the plausibility function we will obtain: 

1),|( ==Δ⊥p   if  0),|( =⊥¬Δ=p  (20) 

where: ),|( =Δ⊥p  is defined like the plausibility that ACBM ⊥ when we know 
that ABCΔ is isosceles and MCAM = ; ),|( ⊥¬Δ=p  is defined like the 
plausibility that MCAM = when we know that ABCΔ is isosceles and 

ACBM ,, ⊥¬  

From (2-5) we can write: 
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Some comments are necessary: usually in the first moment will consider that 
ϕδβα ,,,  are 50%; but after a more careful examination we will realize that these 

plausibility are very smalls because there are many possibilities that are also 
plausible. The solution proves that these values are not important. 

4 The Third Case Study 

The intention of the third case study is to prouve the ability of Plausible Reasoning 
in human reasoning modeling. For this pourpouse we will tray to model the 
famous story of Sun Tzu: ‘Advance to Chencang by a hidden path’. 

The story that we intend to explain by Bayesian model is the following: 

This stratagem took place towards the end of the Qin dynasty. Xiang Yu appointed 
Liu Bang as king of Hanzhong, effectively making him leave China. To further 
ensure that Liu Bang does not return to China from the East, Xiang Yu divided 
Guanzhong into three principilities and put three people in charge, informing 
them to be alert against Liu Bang. 

Liu Bang said, ‘In order to placate Xiang Yu and the three kings, we must destroy 
the mountain plank road to show that we've no intention of returning to China.’ 

After nine years of preparations, Liu Bang's army became powerful and was ready 
to march eastwards. Liu Bang ordered his generals to take 10,000 men and horses 
and repair the plank road within three months. 

Meanwhile, his enemies were greatly perturbed. One of the kings even led his 
forces to block the plank road exit. 

Liu Bang then led his generals and several thousand troops to overrun 
Guanzhong by the old roundabout route through Chencang. 

We intend to model this story by using the Bayesian theorem (6). At first sight the 
victory of Liu Bang is based on his ability to increase the plausibility of the 
likelihood that he will attack on the plank road. 

If we analyze more deeply the story we will find that there are two stage of the 
conflict: the first when Liu Bang must decide about the reaction concerning the 
Xiang Yu actions, and the second when Liu Bang shows his attack intention but 
he must choose the attack direction. 

The story scenario is presented in Figure 6. It can be see that in the first stage of 
the conflict, by destroying the road Liu Bang have increased the peace (non 
attack) likelihood and in this way manipulate Xiang You. In the second stage of 
the conflict by restoring the road Liu Bang have increased the mountain direction 
attack (Am) and manipulate once again his enemy. 
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From mathematical point of view this scenario can be describe in the following 
way: 

• in the initial moment Xiang You can not decide the intention of Liu Bang: 

o %50)()( =¬= APAP ; where A is the sentence ‘Liu Bang will attack’ 

• after seeing that Liu Bang destroyed the road Xiang You decides that: 

o )|()|( 11 AOPAOP >¬ ; where O1 is the observation of the destroyed road; 

o in consequence (6) )|()|( 11 OAPOAP >¬ ; 

• in the initial moment Xiang You can not decide the attack direction of Liu 
Bang: 

o %50)()( =¬= AmPAmP ; where Am is the sentence ‘Liu Bang will attack 
from the mountain’; 

• after seeing that Liu Bang constructs the road Xiang You decides that: 

o )|()|( 22 AmOPAmOP ¬> ; where O2 is the observation of the constructed 
road; 

o in consequence (6) )|()|( 22 OAmPOAmP ¬>  

 
Figure 6 

The story scenario 
Figure 7 

A posible solution 

The famous story can be continued with a problem: have had Xiuag You the 
chance to react at his opponent ability? There are several solutions of this problem 
the first consist on increasing the number of hypothesis of attack direction and 
find new observations (spy). The second solution is presented in Figure 7 and is 
based on changing the causal network by introducing a new decision step. More 
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precisely it can be see that after the second observation O2 Xiuang You becomes 
able to decide the tactic that Liu Bang will use. This observation increases the 
likelihood that his opponent uses his ability to manipulate him. 

From mathematical point of view this solution can be described in the following 
way: 

• in the initial moment Xiang You can not decide the intention of Liu Bang: 

o %50)()( =¬= APAP ; where A is the sentence ‘Liu Bang will attack’ 

• after seeing that Liu Bang destroyed the road Xiang You decides that: 

o )|()|( 11 AOPAOP >¬ ; where O1 is the observation of the destroyed road; 

o in consequence (6) )|()|( 11 OAPOAP >¬ ; 

• in the initial moment Xiang You can not decide about the strategically ability 
of his opponent: 

o %50)()( =¬= MPMP ; where M is the sentence ‘Liu Bang is able to 
manipulete’ 

• after seeing that Liu Bang intends to attack Xiang You decides that: 

o )|()|( 22 MOPMOP ¬> ; where O2 is the observation of the constructed 
road; M is the sentence ‘Liu Bang is able to manipulate’ 

o in consequence (6) )|()|( 22 OMPOMP ¬> ; 

• in the initial moment Xiang You can not decide the attack direction of Liu 
Bang: 

o %50)()( =¬= AmPAmP ; where  Am is the sentence ‘Liu Bang will attack 
from the mountain’; 

• after seeing that Liu Bang constructs the road, and knowing that his opponent 
can manipulate Xiang You decide that: 

o ),|(),|( 22 MAmOPMAmOP ¬< ; 

o in consequence (6) ),|(),|( 22 MOAmPMOAmP ¬<  

Conclusions 

Present paper continues the author researches on cognition system design by 
presenting three different case studies which use the same theory: the Bayesian 
theory of plausible reasoning. The first case study develops a classical differential 
model in to a Bayesian model by adding a qualitative description on the output 
value. The second case study shows the possibilities of plausible reasoning to 
solve geometrical problems where the degree of truth must be very crispy. In the 
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end we have tray to model by Bayesian theory one of the famous stories of Sun 
Tzu. 
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