
Application of Improved Performance Models

Ágnes Bogárdi-Mészöly, Tihamér Levendovszky
Department of Automation and Applied Informatics

Budapest University of Technology and Economics

agi@aut.bme.hu, tihamer@aut.bme.hu

Abstract: The performance of web-based software systems is one of the most important and
complicated consideration. In our work, the dominant performance factors considering the
response time and throughput performance metrics have been identified and modeled. In
order to illustrate the practical applications of the results, a web-based software system
using the proposed algorithms and models has been developed, in addition, the proposed
methods have been applied in real systems. These methods facilitate the efficient
performance prediction of web-based software systems.

Keywords: Web-based software system, Performance measurement, Performance factor
identification, Performance prediction

1 Introduction

Web-based software systems provide users with the opportunity to save time and
money, and improve the way to interact with clients, suppliers and business
partners. New frameworks and programming environments were released to aid
the development of complex web-based software systems. These new languages,
programming models, and techniques are proliferated nowadays, thus, developing
such applications is not the only issue anymore: operating, maintenance and
performance questions have become of key importance.

The performance of web-based software systems is one of the most important and
complicated consideration, because they face a large number of users, and they
must provide high-availability services with low response time, while they
guarantee a certain throughput level.

With the help of a properly designed performance model and an appropriate
evaluation algorithm, the performance metrics can be predicted at early stages of
the development process. In the past few years several methods have been
proposed to address this issue. Several of them is based on queueing networks or
extended versions of queueing networks [1]. Another group is using Petri-nets or

generalized stochastic Petri-nets [2]. As the third kind of the approaches, the
stochastic extension of process algebras, like TIPP (Time Processes and
Performability Evaluation) [3], EMPA (Extended Markovian Process Algebra) [4]
and PEPA (Performance Evaluation Process Algebra) [5] can be mentioned.

1.2 Thread Pool and Queued Requests Concept

In case of using a thread pool, when a request arrives, the application adds it to an
incoming queue [6]. A group of threads retrieves requests from this queue and
processes them. As each thread is freed up, another request is executed from the
queue.

Nowadays the Microsoft .NET became one of the most prominent technologies of
web-based software systems. The .NET Framework offers a highly optimized
thread pool (see Fig. 1 and [7]) which is integrated with most of the classes
included in the framework [6]. This pool is associated with the physical process
where the application is running, there is only one pool per process.

��������	
������
���

���������
���
����

����� ���
���������
��

���

	 ��

�����

�������

�

 	
���������!"#

��������

������

Figure 1
The architecture of ASP.NET environment

The maxWorkerThreads attribute means the maximum number of worker threads,
the maxIOThreads parameter is the maximum number of I/O threads in the .NET
thread pool. The minFreeThreads attribute limits the number of concurrent
requests, because all incoming requests will be queued if the number of available
threads in the thread pool falls below the value for this setting. The
minLocalRequestFreeThreads parameter is similar to minFreeThreads, but it is
related to requests from localhost. These two attributes can be used to prevent
deadlocks by ensuring that a thread is available to handle callbacks from pending
asynchronous requests.

From the IIS (Internet Information Services), the accepted HTTP connections are
placed into a named pipe. This is a global queue between IIS and ASP.NET,

where requests are posted from native code to the managed thread pool. The
global queue is managed by the process that runs ASP.NET, its limit is set by the
requestQueueLimit property. When the Requests Current counter – which includes
requests that are queued, executing, or waiting to be written to the client – reaches
this limit, the requests are rejected [8].

From the named pipe, the requests are placed into an application queue, also
known as a virtual directory queue. Each virtual directory has a queue that is uses
to maintain the availability of worker and I/O threads. The number of requests in
these queues increases if the number of available worker and I/O threads falls
below the limit specified by minFreeThreads property. The application queue
limit is configured by the appRequestQueueLimit property. When the limit is
exceeded, the requests are rejected.

When an application pool receives requests faster than it can handle them, the
unprocessed requests might consume all of the memory, slowing the server and
preventing other application pools from processing requests. The size of the global
queue and the size of the application queue must be limited to prevent requests
from consuming all the memory for the server and for an application queue.

2 Performance Factor Identification

Performance metrics are influenced by many factors. Several papers have
investigated various configurable parameters, how they affect the performance of
web-based software systems. Statistical methods and hypothesis tests are used to
retrieve factors influencing the performance. An approach [9] applies analysis of
variance, other performs independence test [10].

In our work [10] [11], the results of measurement process have been analyzed
using statistical methods with the help of MATLAB. The chi square test of
independence must be performed to investigate whether each input and output are
independent (whereas in case of other inputs the default or recommended values
are preserved). The investigated output is the response time. The inputs are
maxWorkerThreads, maxIOThreads, minFreeThreads, minLocalRequestFree-
Threads, requestQueueLimit, and appRequestQueueLimit.

It has been shown that the chi square test of independence can be applied to
performance factor identification. It has been proven that the thread pool attributes
(maxWorkerThreads, maxIOThreads, minFreeThreads, and minLocalRequest-
FreeThreads) as well as the global and the application queue size limits
(requestQueueLimit and appRequestQueueLimit) are performance factors. The
identified performance factors must be modeled to improve performance models
of web-based software systems.

3 Modeling the Thread Pool and the Queue Limit

Web-based software systems access some resources while executing the requests
of the clients, typically several requests arrive at the same time, thus, competitive
situation is established for the resources. In case of modeling such situation
queueing model-based approaches are widely used. Queueing networks are
proposed to model web-based software systems [12] [13] [14]. The performance
metrics can be predicted with the help of a properly designed performance model
and an appropriate evaluation algorithm.

3.1 Queueing Network Model for Multi-Tier Software Systems

A queueing model [13] [15] is presented for multi-tier information systems, which
are modeled as a network of M queues: Q1 ,...,QM illustrated in Fig. 2. Each queue
represents an application tier. A request can take multiple visits to each queue
during its overall execution, thus, there are transitions from each queue to its
successor and its predecessor, as well. Namely, a request from queue Qm either
returns to Qm-1 with a certain probability pm, or proceeds to Qm+1 with the
probability pm. There are only two exceptions: the last queue QM, where all the
requests return to the previous queue (pM=1) and the first queue Q1, where the
transition to the preceding queue denotes the completion of a request. Sm denotes
the service time of a request at Qm (1 � m � M).

Internet workloads are usually session-based. The model can handle session-based
workloads as an infinite server queueing system Q0 that feeds the network of
queues and forms the closed queueing network depicted in Fig. 2. The time spent
at Q0 corresponds to the user think time Z.

Z

Z

Z

1S

1Q

2S

2Q

MS

MQ

Mp

11 −− Mp21 p−11 p−

3p

2p

1p

0Q

Figure 2
Modeling a multi-tier information system using a queueing network

The Mean-Value Analysis (MVA) algorithm for closed queueing networks [16] is
defined by Algorithm 3.1, where the input parameters of the algorithm are the
number of customers (N), the number of tiers (M), the average user think time (Z),
the visit number (Vm) and the average service time (Sm) for Qm (1 � m � M), in

addition, the output parameters are the throughput (�), the response time (R), the
response time for Qm (Rm) and the average length of Qm (Lm).

3.2 Novel Algorithm to Model the Thread Pool

It is worth decomposing a web-based software system to multiple tiers, and
modeling it according to Fig. 2, because the service time of each tier can be very
different. In case of a three-tier architecture, the presentation tier corresponds to an
output tier and the database tier is an input/output tier. The business logic layer
corresponds to a CPU tier.

By taking into account the behavior of the thread pool, the MVA algorithm can be
effectively enhanced. Consider that the actual request contains CPU as well as I/O
(input/output) calls. In case of multiple threads, I/O calls do not block the CPU,
because the execution can continue on other non-blocked threads. This enables
handling I/O requests and executing CPU instructions simultaneously.

In our work [17] [18] [19], a novel algorithm modeling the behavior of the thread
pool has been proposed presented by Algorithm 3.2, where the CPU index means
a CPU tier index and the I/O index corresponds to an I/O tier index from 1 � m �
M.

It has been shown that the proposed algorithm modeling the thread pool can be
applied to performance prediction. The response time and throughput performance
metrics can be predicted with the novel improved algorithm.

Firstly, the original MVA and the proposed algorithm have been implemented
with the help of MATLAB. Secondly, the input values have been estimated in
both environments from one-one measurement. Finally, the queueing model has
been evaluated to predict performance metrics with the proposed algorithm
modeling the thread pool.

3.3 Novel Algorithms Modeling the Queue Limit

The queue size must be limited to prevent requests from consuming all the
memory for the server, for an application queue. By taking into consideration the
queue limit, the MVA algorithm can be effectively enhanced. The [13]
enhancement of the baseline model handles such concurrency limits, when each
tier has its individual concurrency limit. This approach manages concurrency
limits, when tiers have one or more common concurrency limits.

A novel algorithm modeling the global queue limit has been provided presented
by Algorithm, where the GQL is the global queue limit, which corresponds to the
requestQueueLimit parameter in ASP.NET environment.

Considering the concept of the global queue, if the current requests – queued plus
executing requests (by ASP.NET) – exceed the global queue limit (GQL), the next
incoming requests will be rejected. In these cases, the queue length has not to be
updated (see Steps 10 and 13 of Algorithm 3.3). The queued requests sum of the
model and algorithm contains not only the queued requests by ASP.NET but the
working threads of ASP.NET, as well.

A novel algorithm modeling the application queue limit has been proposed
presented by Algorithm 3.4, where the AQL is the application queue limit, which
corresponds to the appRequestQueueLimit parameter in ASP.NET environment, in
addition, the WT is the maximum number of working threads, which equals to
maxWorkerThreads+maxIOThreads-minFreeThreads in ASP.NET environment.

Considering the concept of the application queue, if the number of queued
requests (by ASP.NET) exceeds the application queue limit (AQL), the next

incoming requests will be rejected. In these cases, the queue length have not to be
updated (see Steps 10 and 13 of Algorithm 3.4). Since the queued requests sum of
the model and algorithm contains not only the queued requests by ASP.NET but
the working threads of ASP.NET, as well. Thus, WT has to be subtracted from the
number of queued requests of the model and algorithm to obtain the the queue
requests by ASP.NET.

It has been shown that the proposed algorithms modeling the global and
application queue limits can be applied to performance prediction. The response
time and throughput performance metrics can be predicted with the improved
algorithms depicted in Fig. 3. It has been proven that when requests are rejected
because of exceeding the queue limit, the original algorithm fails to predict the
response time performance metric, but the proposed algorithms modeling the
global and application queue limits predict performance metrics correctly see Fig.
3.

Figure 3
Predicted response time performance metric with the original MVA and with the proposed algorithm

modeling the queue limit

3.4 Validation and Error Analysis of the Proposed Algorithms

Performance measurements have been performed in ASP.NET environments for
validating the proposed models and algorithms. The validity of the proposed
algorithms and the correctness of the performance prediction with the proposed
algorithms have been proven with performance measurements [17] [18] [19].

The error has been analyzed to verify the correctness of the performance
prediction with the proposed algorithms. Two methods are applied: the average
absolute error function and the error histogram. The error analysis has verified the
correctness of the performance prediction with the proposed algorithms, namely,
the enhanced algorithms predict the performance metrics much more accurately
than the original MVA algorithm.

4 Posibilities of Practical Application

The results – evaluation algorithm enhancement modeling the thread pool and the
queue limit, performance factor identification, modeling multi-tier software
systems – together they form improved performance models of web-based
software systems. These techniques are successfully applied on industrial
applications like Hungarian Microsoft Educational Portal [20]. Furthermore, the
proposed algorithms and models have been realized in a web-based software
system.

In this section, an overview is given on the basic concepts and the architecture of
the developed web-based software system. That is followed by the detailed
description of the components based on the result of my research, namely,
performance measurements, performance factor identification, performance
prediction. It includes case studies offering solutions to practical problems.

4.1 Basic Concepts and Architecture

A web-based software system has been developed in ASP.NET environment to
demonstrate the possibilities of practical application of the proposed algorithms
and models. The results of this thesis have been realized by a software package,
which contains the contributions of this thesis in modular structure.

The application server has been ASP.NET 3.5 runtime environment. The web-
based system has been developed with the help of Microsoft Visual Studio .NET
2008 in C# language. It is an interactive web application using AJAX.

The architecture of the developed web-based software system is illustrated in Fig.
4. It has a three-tier architecture: the presentation tier is ASP.NET web forms, the
business logic layer is in C# classes invoking MATLAB functions, the data access
layer is using ADO.NET, and the database layer is in SQL server.

Figure 4
Architecture of the developed web-based software system

The proposed models and algorithms – chi square test of independence, queueing
network model for multi-tier software systems with MVA, approximate MVA,
and balanced job bounds, in addition, improved models and algorithms modeling

the behavior of thread pool and the queue limit, furthermore, validation and error
analysis – have been implemented in MATLAB. The MATLAB programs have
been invoked and applied in .NET environment.

4.2 Components

There are three main parts of the web-based software system as tab layout:
• Performance measurements step by step
• Performance factor identification
• Performance prediction, validation, error analysis

The first tab is a step by step guide to provide performance measurements. The
whole process can not be automated. The given steps should be followed to
perform a measurement process:

• Deploy a web-based software system on the server
• Generate client workload on the client
• Setup reconfig file on the server (if during the measurements there are

some changes in the web.config configuration file)
• Setup scheduled tasks on the server (if during the measurements there are

some changes in the web.config configuration file)
• Start performance measurements (JMeter) on the client
• Save results of performance measurements on the client

The results of performance measurement processes have been analyzed
statistically in Section 2 [10] [11], in addition, they have been applied to validate
the queueing model and the proposed algorithms, and to verify the correctness of
the performance prediction Section 3.4 [17] [18] [19]. For model parameter
estimation and model evaluation (in Sections 3.2 and 3.3) only one measurement
or one estimation in case of one customer is required.

On the second tab the performance factor identifying process can be performed.
The results of measurement processes can be uploaded from Excel file format. I
have realized on this tab the the proposed statistical methods of Section 2 [10]
[11].

On the third tab, firstly, the performance metrics can be predicted with the original
and with the enhanced algorithms modeling the thread pool and modeling the
queue limit, secondly, the enhanced algorithms can be validated using results of
performance measurements, and finally, error analysis can be performed to
demonstrate the accuracy of the enhanced algorithms. The results of measurement
processes can be uploaded from Excel file format. I have realized on this tab the
contributions of Section 3 [17] [18] [19].

Conclusions

Performance factors must be identified and modeled to improve performance
models. Novel algorithms modeling the thread pool and the queue limit
performance factors have been proposed. It has been shown that the proposed
algorithms can be applied to performance prediction. Our proposed algorithms can
be used to predict the performance of a multi-tier information system. These
algorithms can predict the response time and throughput performance metrics up
to an arbitrary number of customers, only the input values of the algorithm must
be estimated or measured.

In this paper, the practical results have been presented, which are based on the
theoretical models and algorithms presented in this paper and earlier. Firstly, the
basic concepts and the architecture of the developed web-based software system
have been introduced. Then, the detailed description of the components has been
given, namely, performance measurements, performance factor identification,
performance prediction, which includes case studies offering solutions to practical
problems.

References

[1] R. Jain: The Art of Computer Systems Performance Analysis, John Wiley
and Sons, 1991.

[2] S. Bernardi, S. Donatelli and J. Merseguer: From UML Sequence Diagrams
and Statecharts to Analysable Petri Net Models, ACM International
Workshop Software and Performance, 2002, pp. 35-45.

[3] U. Herzog, U. Klehmet, V. Mertsiotakis and M. Siegle: Compositional
Performance Modelling with the TIPPtool, Performance Evaluation Vol.
39, 2000, pp.5-35.

[4] M. Bernardo and R. Gorrieri: A Tutorial on EMPA: A Theory of
Concurrent Processes with Nondeterminism, Priorities, Probabilities and
Time, Theoretical Computer Science, Vol. 202, 1998, pp. 11-54.

[5] S. Gilmore and J. Hillston: The PEPA Workbench: A Tool to Support a
Process Algebra-Based Approach to Performance Modelling, International
Conference Modelling Techniques and Tools for Performance Evaluation,
1994, pp. 353-368.

[6] D. Carmona: Programming the Thread Pool in the .NET Framework, .NET
Development (General) Technical Articles, 2002.

[7] J.D. Meier, S. Vasireddy, A. Babbar and A. Mackman: Improving .NET
Application Performance and Scalability (Patters & Practices), Microsoft
Corporation, 2004.

[8] T. Marquardt: ASP.NET Performance Monitoring, and When to Alert
Administrators, ASP.NET Technical Articles, 2003.

[9] M. Sopitkamol and D. A. Menascé: A Method for Evaluating the Impact of
Software Configuration Parameters on E-commerce Sites, ACM 5th
International Workshop on Software and Performance, 2005, pp. 53-64.

[10] Á. Bogárdi-Mészöly, Z. Szitás, T. Levendovszky and H. Charaf:
Investigating Factors Influencing the Response Time in ASP.NET Web
Applications, Lecture Notes in Computer Science, Vol. 3746, 2005, pp.
223-233.

[11] Á. Bogárdi-Mészöly, T. Levendovszky and H. Charaf: Performance
Factors in ASP.NET Web Applications with Limited Queue Models, 10th
IEEE International Conference on Intelligent Engineering Systems, 2006,
pp. 253-257.

[12] D.A. Menascé and V. Almeida: Capacity Planning for Web Services:
Metrics, Models, and Methods, Prentice Hall PTR, 2001.

[13] B. Urgaonkar: Dynamic Resource Management in Internet Hosting
Platforms, Dissertation, Massachusetts, 2005.

[14] C.U. Smith and L.G. Williams: Building responsive and scalable web
applications, 2000, Computer Measurement Group Conference, pp. 127-
138.

[15] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer and A. Tantawi: An
Analytical Model for Multi-tier Internet Services and its Applications,
ACM SIGMETRICS Performance Evalutaion Review, Vol. 33(1), 2005,
pp. 291-302.

[16] M. Reiser and S.S. Lavenberg: Mean-Value Analysis of Closed Multichain
Queuing Networks, Association for Computing Machinery, Vol. 27, 1980,
pp. 313-322.

[17] Á. Bogárdi-Mészöly, T. Levendovszky and H. Charaf: Extending the
Mean-Value Analysis Algorithm According to the Thread Pool
Investigation, 5th IEEE International Conference on Industrial Informatics,
2007, pp. 731-736.

[18] Á. Bogárdi-Mészöly, T. Hashimoto, T. Levendovszky and H. Charaf:
Thread Pool-Based Improvement of the Mean-Value Analysis Algorithm,
10th European Computing Conference 2007, Lecture Notes in Electrical
Engineering, Vol. 27(2), 2009, pp. 1241-1254.

[19] Á. Bogárdi-Mészöly, T. Levendovszky and Á. Szeghegyi: Analyzing the
Convergence of an Enhanced Performance Evaluation Algorithm, 12th
IEEE International Conference on Intelligent Engineering Systems, 2008,
pp. 185-190.

[20] Hungarian Microsoft Educational Portal: http://www.msportal.hu.

