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Abstract

This paper is focusing on rollover prevention to provide a heavy vehicle with the
ability to resist overturning moments generated during cornering. A combined yaw-
roll model including the roll dynamics of unsprung masses is studied. This model
is nonlinear with respect to the velocity of the vehicle. In our model the velocity is
handled as an LPV scheduling parameter. The Linear Parameter-Varying model of
the heavy vehicle is transformed into a proper polytopic form by Tensor Product
model transformation. The H∞ gain-scheduling based control is immediately
applied to this form for the stabilization. The effectiveness of the designed controller
is demonstrated by numerical simulation.

1 Introduction
Roll stability is determined by the height of the center of mass, the track width

and the kinematic properties of the suspensions. The problem with heavy vehicles is a
relatively high mass center and narrow track width. When the vehicle is changing lanes
or trying to avoid obstacles, the vehicle body rolls out of the corner and the center of
mass shifts outboard of the centerline, and a destabilizing moment is created.

In the literature there are many papers with different approaches on the active control
of the heavy vehicles to decrease the rollover risk. Three main schemes concerned with
the possible active intervention into the vehicle dynamics have been proposed: active
anti roll bars, active steering and active brake. The control design is usually based on
linear time invariant models and linear approaches. The forward velocity is handled as a
constant parameter in the yaw-roll model; however, velocity is an important parameter
as far as roll stability is concerned [1–3].

In this paper, a combined yaw-roll model including the roll dynamics of unsprung
masses is studied [1]. This model is nonlinear with respect to the velocity of the
vehicle. Thus, in our model velocity is handled as an LPV scheduling parameter. The
controller based on this Linear Parameter-Varying (LPV) model is adjusted continuously
by measuring the vehicle velocity in real-time.

The control design is based on the following steps:

1. The Linear Parameter-Varying (LPV) dynamic model of the heavy vehicle model
is given.

2. We apply the Tensor Product (TP) model transformation to transform the LPV
model to a TP-type convex polytopic model form. The TP model transformation
is a recently proposed automatically executable numerical method. It is devel-
oped for controller design involving LPV model representation and linear matrix
inequality (LMI) based control design. It is capable of numerically generate
different convex polytopic forms of LPV dynamic models, whereupon LMI-based



design is immediately be executable. It is important to emphasize that in many
cases, the analytical derivation of these polytopic models needs very sophisticated
and time consuming derivations

3. Then we apply the LMI theorems ofH∞ gain-scheduling to design the controller.
The paper is organized as follows: Section 2 defines the LPV model form, its
representation in TP model form. Section 3 introduces the LPV model of the
heavy vehicle, Section 4 presents the TP model representation, then Section 5
describes the proposed controller design method. Section 6 shows the simulation
results. Finally we give a short conclusion at the end of the paper.

2 Definitions

2.1 Nomenclature
• {a, b, . . .}: scalar values;

• {a,b, . . .}: vectors;

• {A,B, . . .}: matrices;

• {A,B, . . .}: tensors;

• RI1×I2×···×IN :vector space of real valued (I1 × I2 × · · · × IN)-tensors.

• Subscript defines lower order: for example, an element of matrix A at row-column
number i, j is symbolized as (A)i, j = ai, j. Systematically, the ith column vector of
A is denoted as ai, i.e. A =

[
a1 a2 · · ·

]
.

• (·)i, j,n, . . .: are indices;

• (·)I,J,N , . . .: index upper bound: for example: i = 1..I, j = 1..J, n = 1..N or
in = 1..In.

• A+: the pseudo inverse of matrix A.

• A(n): n-mode matrix of tensorA ∈ RI1×I2×···×IN ;

• A ×n U: n-mode matrix-tensor product;

• rankn(A): n-mode rank of tensorA, that is rankn(A) = rank(A(n));

• A �N
n=1 Un: multiple product asA×1 U1 ×2 U2 ×3 .. ×N UN ;

Detailed discussion of tensor notations and operations is given in [4].

2.2 Linear Parameter-Varying state-space model
Consider the following parameter-varying state-space model:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t), (1)
y(t) = C(p(t))x(t) + D(p(t))u(t),



with input u(t), output y(t) and state vector x(t). The system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ RO×I (2)

is a parameter-varying object, where p(t) ∈ Ω is time varying N-dimensional parameter
vector, and is an element of the closed hypercube

Ω = [a1, b1] × [a2, b2] × · · · × [aN , bN] ⊂ RN .

p(t) can also include some elements of x(t) in which case the model is a quasi-Linear
Parameter-Varying model.

2.3 Finite element TP model form of quasi LPV models
S(p(t)) is given for any parameter p(t) as the combination of LTI system matrices

Sr, r = 1, . . . ,R. Matrices Sr are also called vertex systems. Therefore, one can define
weighting functions wr(p(t)) ∈ [0, 1] ⊂ R such that matrix S(p(t)) can be expressed as
parameter dependent weighted combination of system matrices Sr. The explicit form of
the TP model in terms of tensor product becomes:(

ẋ(t)
y(t)

)
= S

N
�

n=1
wn(pn(t))

(
x(t)
u(t)

)
. (3)

Here, row vector wn(pn) ∈ RIn n = 1, . . . ,N contains the one variable weighting
functions wn,in (pn). Function wn, j(pn(t)) ∈ [0, 1] is the j-th one variable weighting
function defined on the n-th dimension of Ω, and pn(t) is the n-th element of vector p(t).
In (n = 1, . . . ,N) is the number of the weighting functions used in the n-th dimension of
the parameter vector p(t). The (N + 2)-dimensional tensor

S ∈ RI1×I2×···×IN×O×I

is constructed from LTI vertex systems Si1i2...iN ∈ R
O×I . Finite element TP model means

that the LTI components of the model is bounded. For further details we refer to [5–7].

2.4 Convex TP model form of qLPV model
The convex combination of the LTI vertex systems is ensured by the conditions:

Definition 1 The TP model (3) is convex if:

∀n ∈ [1,N], i, pn(t) : wn,i(pn(t)) ∈ [0, 1]; (4)

∀n ∈ [1,N], pn(t) :
In∑

i=1

wn,i(pn(t)) = 1. (5)

This simply means that S(p(t)) is within the convex hull of the LTI vertex systems
Si1i2...iN for any p(t) ∈ Ω.
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Figure 1: Rollover vehicle model

2.5 Link to the polytopic form
In order to have a direct link between the TP model form and the polytop formula,

we define the following index transformation:

Definition 2 (Index transformation) Let

Sr =

(
Ar Br

Cr Dr

)
= Si1,i2,...,iN ,

where r = ordering(i1, i2, . . . , iN) (r = 1 . . .R =
∏

n In). The function “ordering” results
in the linear index equivalent of an N dimensional array’s index i1, i2, . . . , iN , when the
size of the array is I1 × I2 × · · · × IN . Let the weighting functions be defined according
to the sequence of r:

wr(p(t)) =
∏

n

wn,in (pn(t)).

By the above index transformation one can write the TP model (3) in the typical
polytopic form of:

S(p(t)) =

R∑
r=1

wr(p(t))Sr. (6)

Remark: Note that the LTI systems Sr and Si1,i2,...,iN are the same, only their indices
are modified, therefore the convex hull defined by the LTI systems is the same in both
forms.

3 LPV model of the heavy vehicles
Figure 1 illustrates the combined yaw-roll dynamics of the vehicle modeled by a

three-body system, in which ms is the sprung mass, mu, f is the unsprung mass at the



mv(β̇ + ψ̇) − mshφ̈ = Yββ + Yψ̇ψ̇ + Yδ f δ f (7)

−Ixzφ̈ + Izzψ̈ = Nββ + Nψ̇ψ̇ + Nδ f δ f +
lw
2

∆Fb (8)(
Ixx + msh2

)
φ̈ − Ixzψ̈ = msghφ + msvh(β̇ + ψ̇) − k f (φ − φt, f ) − b f (φ̇ − ˙φt, f ) − kr(φ − φt,r) − br(φ̇ − ˙φt,r)

(9)

−r
(
Yβ, f β + Yψ̇, f ψ̇ + Yδ f δ f

)
= mu, f v(r − hu, f )(β̇ + φ̇) + mu, f ghu, f φt, f − kt, f φt, f + k f (φ − φt, f ) + b f (φ̇ − ˙φt, f )

(10)

−r
(
Yβ,rβ + Yψ̇,rψ̇

)
= mu,rv(r − hu,r)(β̇ + ψ̇) − mu,rghu,rφt,r − kt,rφt,r + kr(φ − φt,r) + br(φ̇ − φ̇t,r)

(11)

front including the front wheels and axle, and mu,r is the unsprung mass at the rear with
the rear wheels and axle.

The conditions of yaw-roll model used in control design are considered. It is
assumed that the roll axis is parallel to the road plane in the longitudinal direction of
the vehicle at a height r above the road. The location of the roll axis depends on the
kinematic properties of the front and rear suspensions. The axles of the vehicle are
considered to be a single rigid body with flexible tires that can roll around the center
of the roll. The tire characteristics in the model are assumed to be linear. The effect
caused by pitching dynamics in the longitudinal plane can be ignored in the handling
behavior of the vehicle. The effects of aerodynamic inputs (wind disturbance) and
road disturbances are also ignored. The roll motion of the sprung mass is damped
by suspensions and stabilizers with the effective roll damping coefficients bs,i and roll
stiffness ks,i.

In the vehicle modeling the the lateral dynamics, the yaw moment, the roll moment
of the sprung and the unsprung masses are taken into consideration. The symbols of
the yaw-roll model are found in Table 1. The motion differential equations are the
following.

Here, the tire coefficients are given by: Yβ = −(C f +Cr)µ,Nβ = (Crlr −C f l f )µ,Yψ̇ =

(Crlr −C f l f )
µ
v ,Nψ = −(C f l2f + Crl2r ) µv ,Yδ f = C fµ,Nδ f = C f l fµ. These equations can be

expressed in a state space representation. Let the state vector be the following:

x =
[
β ψ̇ φ φ̇ φt, f φt,r

]T
. (12)

The system states are the side slip angle of the sprung mass β, the yaw rate ψ̇, the roll
angle φ, the roll rate φ̇, the roll angle of the unsprung mass at the front axle φt, f and at
the rear axle φt,r respectively. Then the state equation arises in the following form

E(p)ẋ = A0(p)x + B1,0δ f + B2,0u, (13)

where the matrices are defined by equations (18) and (19). The parameter of the system
is the forward velocity

p = v.

Equation (13) can be rewritten as

ẋ = A(p)x + B1(p)δ f + B2(p)u, (14)



E(v) =



mv 0 0 −msh 0 0
0 Izz 0 −Ixz 0 0

−msvh −Ixz 0 Ixx + msh2 −b f −br
mu, f v(r − hu, f ) 0 0 0 −b f 0
mu,rv(r − hu,r) 0 0 0 0 −br

0 0 1 0 0 0


, B1,0 =



Yδ f

Nδ f

0
rYδ f

0
0


, B2,0 =



0
lw/2

0
0
0
0


(18)

A0(v) =



Yβ Yψ̇ − mv 0 0 0 0
Nβ Nψ̇ 0 0 0 0
0 mshv msgh − k f − kr −b f − br k f kr

−rYβ, f rYψ̇, f − mu, f v(r − hu, f ) −k f −b f k f + kt, f − mu, f ghu, f 0
−rYβ,r −rYψ̇,r − mu,rv(r − hu,r) −kr −br 0 kr + kt,r − mu,rghu,r

0 0 0 1 0 0


(19)

where

A(p) = E−1(p)A0(p) (15)

B1(p) = E−1(p)B1,0 (16)

B2(p) = E−1(p)B2,0 (17)

The δ f is the front wheel steering angle. The control input is the difference of brake
forces between the left and the right hand side of the vehicle.

u = ∆Fb

The control input provided by the brake system generates a yaw moment, which affects
the lateral tire forces directly. In our case it is assumed that the brake force difference
∆Fb provided by the controller is applied to the rear axle. This means that only one wheel
is decelerated at the rear axle. This declaration is caused by an appropriate yaw moment.
In our case the difference between the brake forces can be given ∆Fb = Fb,rl − Fb,rr.
This assumption does not restrict the implementation of the controller because it is
possible that the control action be distributed on the front and the rear wheels at one of
the two sides. The reason for distributing the control force to front and rear wheels is
to minimize the wear of the tires. In this case a logic is required which calculates the
brake forces for the wheels.

In the equation (14) the A(p) matrix depends on the forward velocity of the vehicle
nonlinearly. In the linear yaw-roll model the velocity is considered a constant parameter.
However, forward velocity is an important stability parameter so that it is considered
to be a variable of the motion. Hence the throttle is constant during a lateral maneuver
and the forward velocity depends on only the brake forces. The differential equation for
forward velocity is

mv̇ = −Fb,rl − Fb,rr.

4 Convex TP model of the heavy vehicle model
In this section we derive the TP model of the LPV model (14) by TP model trans-

formation. We execute the TP model transformation over M (M = 137) points grid
net in the v ∈ Ω = [40km/h, 120km/h] domain. We have applied the MATLAB Tensor
Product Model Transformation Toolbox (TPTool) (http:\\tptool.sztaki.hu) for



Table 1: Symbols of the yaw-roll model
Symbols Description

h height of CG of sprung mass from roll axis
hu,i height of CG of unsprung mass from ground
r height of roll axis from ground
ay lateral acceleration
β side-slip angle at center of mass
ψ heading angle
ψ̇ yaw rate
φ sprung mass roll angle
φt,i unsprung mass roll angle
δ f steering angle
ui control torque
Ci tire cornering stiffness
Fzi total axle load
Ri normalized load transfer
ki suspension roll stiffness
bi suspension roll damping
kt,i tire roll stiffness
Ixx roll moment of inertia of sprung mass
Ixz yaw-roll product of inertial of sprung mass
Izz yaw moment of inertia of sprung mass
li length of the axle from the CG
lw vehicle width
µ road adhesion coefficient

the TP model transformation to determine the LTI systems (Si) and the weightings (wi).
The TP model transformation shows that the LPV model of the heavy vehicle model
can exactly be given by the convex combination of 3 LTI vertex systems:

S(p(t)) =

3∑
i=1

wi(p(t))Si (20)

This polytopic for is not unique and the type of the weightings can considerably
influence the feasibility of LMI constraints and the resulting controller control perfor-
mance [8]. In order to relax the feasibility of the LMI conditions, we define the tight
convex hull of the LPV model via generating close to NO type weighting functions by
the TP model transformation.

Definition 3 (NO – Normality) Vector w(p), containing weighting functions wi(p) is
NO if they satisfy conditions (4) and (5), and the maximum values of the weighting
functions are one. We say wi(p) is close to NO if it satisfies conditions (4) and (5), and
the maximum values of the weighting functions are close to one.

Its geometrical meaning is that we determine a convex hull in such a way that as many
of the LTI systems as possible are equal to the S(p) over some p ∈ Ω and the rest of the
LTIs are close to S(p) (in the sense of L2 norm). The resulting weightings are depicted
in Figure 2.

5 Control design
The aim of the rollover prevention is to provide the vehicle with the ability to

resist overturning moments generated during cornering. Roll stability is determined



40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity (km/h)

W
ei

gh
tin

g 
fu

nc
tio

ns

Figure 2: Close to NO weighting functions of the TP model

by the height of the center of mass, the track width and the kinematic properties of
the suspensions. The problem with heavy vehicles is a relatively high mass center and
narrow track width. When the vehicle is changing lanes or trying to avoid obstacles,
the vehicle body rolls out of the corner and the center of mass shifts outboard of the
centerline, and a destabilizing moment is created.

In this section we utilize the above obtained convex model for the stabilization
control of the heavy vehicle model. We seek an LPV controller of the form

ẋK = AK(p(t))xK + BK(p(t))y
u = CK(p(t))xK + DK(p(t))y

where (
AK(p(t)) BK(p(t))
CK(p(t)) DK(p(t))

)
= K(p(t)) =

3∑
i=1

wi(p(t))Ki

with the same wi(p(t)) weighting functions as in the model representation (20), xK is the
internal state of the controller, the measured output of the model is the yaw rate so y = ψ̇
and u = ∆Fb is the control signal. To design a suitable K(p) for the given polytopic
model the self-scheduledH∞ controller design method [9, 10] was used.

The closed-loop interconnection structure, which includes the feedback structure
of the model P and controller K, is shown in Figure 3. In the diagram, d, u, y and z
are the disturbance, the control input, the measured output and the performance output,
respectively.

A standard feedback configuration with weights strategy is illustrated in Figure 4. In
the diagram u is the control input, y is the measured output, zp is the performance output,
zu and zy are performances at the input and the output, w is the disturbance, n is the
measurement noise. The aim of the weighting function Wp is to define the performance
specifications. They can be considered as penalty functions, i.e. weights should be large
in a frequency range where small signals are desired and small where large performance
outputs can be tolerated. Wu and Wy may be used to reflect some restrictions on the
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actuator and on the output signals. The purpose of the weighting functions Ww and Wn

is to reflect the disturbance and sensor noises. The disturbance and the performances in
the general P −K structure are d =

[
w n

]T
and z =

[
zu zy zp

]T
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The augmented plant includes the parameter dependent vehicle dynamics and the
weighting functions, which are defined in the following form:[

z
y

]
= P(p)

[
d
u

]
. (21)

In a Linear Parameter Varying (LPV) model p denotes the scheduling variable.
The closed-loop system M(p) is given by a lower linear fractional transformation

(LFT) structure:

M(p) = F`(P(p),K(p)), (22)

where K(p) also depends on the scheduling variable p. The goal of the control design is
to minimize the induced L2 norm of an LPV system M(p), with zero initial conditions,
which is given by

||M(p)||∞ = sup
p∈Ω

sup
||w||2,0,w∈L2

||z||2
||w||2

. (23)
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Figure 6: Simulation results

6 Simulation results
At the initial configuration of the simulation the system had a velocity of v =

120km/h and all the state variables were set to zero. Then a sharp maneuver was
simulated as seen in Figure 5 which describes the situation when the truck performs an
obstacle avoidance. The goal is to stabilize the truck by braking the rear wheels.

The results can be seen on Figure 6. From the results it can be seen that the rollover
likelihood can be reduced efficiently with active breaking.

7 Conclusion
In this paper we investigated the rollover prevention problem for the heavy vehicle

model. The novelty of this paper is that the convex polytopic representation of the
vehicle model was generated by Tensor Product Model Transformation. AnH∞ gain-
scheduling method was used to determined the controller to solve the rollover problem.
Simulations present the performance of this controller design method.
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