
Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 321

Universal Domain-Specific Code Generator

László Siroki, Gergely Mezei, Tihamér Levendovszky,
Tamás Mészáros
Budapest University of Technology and Economics
{lsiroki, gmezei, tihamer, meszaros}@aut.bme.hu

Abstract: Nowadays, supporting domain-specific modeling is essential in software
development. We have created several domain-specific modeler applications in the last few
years. By summarizing our experiences and knowledge, we are now building a highly
flexible and efficient solution, a new version of our modeling environment, Visual Modeling
and Transformation System. Flexibility is reached by modular design, while efficiency is
gained mainly by using strongly typed model elements and compiled, domain-specific
classes. One of the key components of the new system is the code generator that can
produce these specialized classes by processing domain definitions. In this paper, we
present the main solutions of our modeling system and we introduce the generator
component in detail.

Keywords: modeling system, metamodeling, domain-specific, source code generation

1 Introduction

Domain-specific visual languages play an essential role in software engineering,
especially in the field of model-driven development. By illustrating the problems
in a graphical way, these languages permit to raise the level of abstraction and
help to define the steps of the software lifecycle. The increasing popularity of
domain-specific languages requires applications that are capable of visualizing
these languages and offer a user-friendly way to edit the models interactively.

The Visual Modeling and Transformation System (VMTS) [1] is a transparent N-
layer modeling and metamodeling framework developed by our research team.
Three versions of the VMTS framework has been implemented previously, we are
now developing the fourth version, using our experiences from the previous
works, the features and solutions learned from other frameworks and considering
some missing features of existing tools. The main requirements for the design of
the new VMTS framework are as follows: (i) The framework must support
different business domains, where the model elements, their appearance and editor
functions can be different (diversity). (ii) The framework must support multiple

L. Siroki et al.
Universal Domain-Specific Code Generator

 322

storage types, these storage formats should be extendable. (iii) There is a need to
process the models with different algorithms, so the representation of the models
must provide an API for reading and modifying the models. (iv) The performance
of the framework is essential, which is conflicting with the need for advanced
features. To resolve this problem, our new framework supports generating
different representations of the same model with different features for different
purposes.

The paper is organized as follows: Section 2 presents the background of our
research; it elaborates similar modeling tools and their features. Section 3
introduces the new architecture of the VMTS. Section 4 explains the role of the
code generator as well. The most significant aspects and the details of the
implementation of the generator are described in the Section 5. In order to show
how the approach works, Section 5 also includes a few simplified examples.

2 Related Work

Eclipse [2] is a highly generic modeling environment. Eclipse Graphical Editing
Framework (GEF) [3] is an open source infrastructure for creating and using
graphical editors based on Eclipse. The underlying architecture of GEF is the
Model-View-Controller [4] pattern. The manageable data (model), the
visualization (view) and the interaction features (controller) are separated into
different classes. The model classes can be arbitrary Java classes (POJO),
however, the controller classes should derive from the common EditParts class.
The visualization can be performed by an arbitrary Java class by implementing a
predefined interface (IFigure). GEF does not support automatic change-
notification services, due to the underlying arbitrary model object. Notification
mechanisms should be performed through manually written listener and adapter
objects.

Graphical Modeling Framework [5] (GMF) is another Eclipse project, GMF
utilizes GEF. Compared to GEF, GMF uses Eclipse Modeling Framework [6]
(EMF) models as the underlying model object. EMF facilitates the serialization of
models in various formats and the change notification mechanism is also a built-in
feature. The editor environments in GMF are generated. The code generation is
based on four models: (i) the EMF model (domain model) which serves as the
model of the visual language; (ii) the Graphical Definition Model that defines the
visualization of each model element; (iii) the Tooling Definition Model, which
describes the additional visual elements required for the user interface (including
editor palettes, menus) and (iv) the Mapping Definition Model, which realizes the
mapping between the domain model and the visual models. The creation of
models (ii)-(iv) and the generation of the editor from the input models is supported
by the GMF Dashboard wizard.

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 323

The TIGER [7] (transformation-based generation of environments) tool generates
visual editor plugins for Eclipse from typed grammar-based visual language
specifications. TIGER is based on EMF to store models in the memory and to
perform serialization and uses GEF to visualize models.

DiaMeta [8] is a framework for generating graphical diagram editors. It uses
hypergraph grammars to specify visual languages. Editors generated with DiaMeta
are capable of running online structural and syntactic analysis on the edited
models. DiaMeta also employs EMF to define visual languages. Thus, it provides
a similar approach to the one presented in connection with TIGER: change
notification events are generated by the underlying EMF model on attribute
changes, and the generated view and controller objects update the visualization as
response to these events. In contrast with TIGER, DiaMeta uses custom classes for
model visualization instead of utilizing GEF.

Generic Modeling Environment (GME) [9] is a general purpose metamodeling
and program synthesis environment. The modeling concepts of GME are
represented by the MultiGraph Architecture (MGA) object network. MGA (and
also GME) is built on the COM [10] architecture. MGA objects provide change
notification, transaction handling and support of multi-client collaboration on the
same model. Model elements can be persisted through a unified storage interface
to various storage types including relational database and XML formats. MGA
provides general classes to represent model elements the properties of which can
be reached through the same interface. However, it is also possible to edit model
properties through a typed interface called Builder Object Network (BON), which
is generated for a specific domain. BON also builds on core MGA objects and
only wraps their features. Compared to GME, our framework does not use
wrappers to support writing model processors. Our framework generates the typed
interfaces and objects for each domain.

A common drawback of all the tools above is that each of them uses the same
class and object hierarchy to perform various operations on them (including
visualization, model transformation, custom model processing) and do not support
to use optimized solutions for different purposes. In contrast, our framework
provides optimized data-representation for different kinds of applications.

Table 1
Comparison of existing tools

 GEF GMF TIGER DiaMeta GME
Diversity + + + + -

Event notification - + + + +
Multiple storages - + + - +
Model processor - - + - +
Performance tuning - - - - -

L. Siroki et al.
Universal Domain-Specific Code Generator

 324

3 The New VMTS Architecture

In order to fulfill the requirements mentioned in the introduction, we have
designed a component-based architecture, where the well-defined interfaces allow
replacing the components seamlessly.

Visual Modeling and Transformation System (VMTS) is a graph-based
metamodeling system. Metamodeling means that we can create models not only
for predefined modeling languages, but we can create new modeling languages as
well. New languages are defined by creating models of models, called
metamodels. VMTS uses n-layer, layer transparent metamodeling [11]. This
means that we can also create the metamodels of metamodels, since the base
functions are the same for all modeling layers.

In VMTS, models consist of nodes and edges. An edge connects two nodes. On
the one hand, our model elements (model, node, or edge) implement interfaces
independently from the current domain, but on the other hand, they are customized
for the corresponding domain. The common interfaces are thin, they contain basic
functionalities only, such as name retrieving. Attributes and references to another
typed model elements are handled in the domain-specific part. This means that we
use mainly typed model elements in order to maximize performance and minimize
memory consumption.

VXF (Vmts eXchange Framework)

VMF (Vmts Modeling Framework)

VMTS Applications

VTF Custom TPStudio

VMF/VXF
Generator

Data repository

Database XML Web Service

Domain 3
Domain 2

Domain 1

os_performance os_transactions os_custom

Domain 3
Domain 2

Domain 1

exim_db exim_xml exim_ws

Figure 1

The architecture of VMTS

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 325

The architecture of our system is depicted on Fig. 1. The bottom most level is the
Data Repository that represents the different data persisting stores that can be
connected to the system. Above the repository layer, the VMTS Exchange
Framework (VXF) and VMTS Modeling Framework (VMF) can be found. VXF
and VMF form together the VMTS Data Interface (VDI). These two layers (VXF
and VMF) are used to store the data in the repositories and to store the model data
in memory during editing. At the top level of the architecture, different
components (VMTS Applications) can be found; these components use the VDI to
manipulate the data.

As depicted in Fig. 1, multiple domains are shown in illustration. Different VMF
and VXF components belong to each domain. In VMF, models are stored in an
object-oriented way as domain-specific class instances. Every domain has a set of
interfaces for the model, the nodes, the edges and the attributes of the domain.
There are also implementation classes that implement these interfaces, but there
can be multiple sets of them. The set of data classes that represent a domain is
called the Object Space (OS) of the domain. A domain can have multiple OSs,
which share the common interface, but can have different features because of
different implementations. We may need an OS that contain types implementing
built-in change notifications to simplify visualization and editing of the elements
in the editor. However, in case of model processors, there may be no need for this
overhead since we do not always visualize the model items. Moreover, in case of
model processors, we may require transactions in order to roll back changes, when
a part of the transformation fails. Basically, we need different OSs to be able to
fine tune the system.

The information stored in instances of the data types of the VMF components can
be persisted in different data stores called repositories by the VXF components. A
VXF component is created to each domain, as in the case of VMF components.
The different classes in VXF are called Export Import Classes (EXIMs). In each
domain, an EXIM is created for each available repository type. The EXIM class is
capable of saving and loading the data of the objects of the VMF to and from the
associated repository. Some examples of the repository types that we support are:
(i) database-based repository (for compatibility with older version of VMTS and
parallel model editing), (ii) XML-based repository to store model data in platform-
independent files, (iii) GXL, (iv) XMI. The EXIM classes read and write data by
using the common VMF interfaces, therefore, EXIM classes are OS independent
and it is easy to persist the data to multiple repositories at one time.

The presented system needs additional VMTS applications to visualize and process
the modeled elements and to make generation of components easier. The Adaptive
Modeler Studio is a user interface, where the domains can be specified by means
of metamodels. The VMF/VXF Generator is used to automatically generate the
VMF and VXF components from domain specifications. This means that
components do not need to be implemented by hand. This component is the key of
domain-specific behavior. The VMF/VXF Generator is described in the following
sections.

L. Siroki et al.
Universal Domain-Specific Code Generator

 326

4 The Role of the VMF/VXF Generator

Recall that our system uses metamodeling techniques to define and handle
domain-specific languages. This means that we do not have a predefined language
definition, but we have to process the metamodel in order to obtain the modeling
structure. There is only one exception: at the top of the modeling layers, we have
the SystemRootMeta model that is the root metamodel of all other models and that
is defined by itself. SystemRootMeta was defined by hand, it is read-only.
However, for all of the other models, we have the Generator component, which
processes the definition of the metamodel and create OS and EXIM classes for the
instance models. In Fig. 2, the role of the Generator is illustrated.

Figure 2

EXIM and OS generation process

Firstly, the Layer N EXIM loads the Layer N model to Object Space
representation. Secondly, the Generator generates the Layer N+1 EXIM and OS
for different repositories from the Layer N OS. Here, Layer N OS determines the
common interface shared between all the different OSs.

The Generator creates the Object Space and EXIM interfaces and classes for each
metamodel separately. For the SystemRootMeta model, these are implemented by
hand, but for other models, they are generated by the VMF/VXF Generator.

This mechanism is layer-transparent, namely the models in the Layer N are the
metamodels of the Layer N+1, thus the code is generated from the Layer N model
and it is capable of storing model instances of the Layer N+1. This can be done for
unlimited depth. For every node and edge in the model, attributes can be defined
by a name and a type. These attributes become properties in the next layer.
Moreover, every element can have stereotypes, which can modify their behavior.

From each model item in the metamodel, the following outputs are generated: (i)
An OS-independent interface extending the basic, common interface. Recall that
this basic interface contains atomic, system-wide used properties, such as the

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 327

name, or stereotype of the item. (ii) Multiple OS implementations which
implement the OS independent common interface, but have different features.

In case of nodes, the OS independent interface contains all attributes and all
connecting edges as properties, except inheritance edges that are represented by
inheritance relation between the corresponding interfaces. From each edge in the
metamodel, similar interfaces are generated as for the nodes, because the edges
can also have attributes.

Currently, OS implementations can have the following features: (i) change
notification, (ii) transaction management and (iii) quick relation navigability. The
change notification is important if a user interface is used to display the model –
perhaps in many different views – while the model is changing because of editing
or transformation. The transaction management is important for model
transformations, where we should be able to undo or roll back a complex
transformation step. Quick relation navigability means that relations are not only
stored as edges with references to the endpoints, but as properties directly
referencing the other side of the relation. This is useful for performance reasons if
the attributes of the relations are not used or not present.

Typed EXIM classes are also generated by the VMF/VXF Generator. These
classes support loading and saving of the model and the model elements from and
to the specified repository.

The relation of the common interfaces, OSs and EXIMs are depicted on Fig. 3.
The figure also shows that the common interfaces are used to resolve the N-by-M
problem between the different OSs and EXIMs.

Figure 3

Relation between the common interfaces, OS-es and EXIMs

This way the Export-Import modules for different repositories can load and save
the models independently from the actual Object Space implementations, because
all of them share a common interface.

L. Siroki et al.
Universal Domain-Specific Code Generator

 328

5 Implementing the VMF/VXF Generator

The Code Generator consists of two main sub-modules: the Language-
independent Code Model Generator and the Language Plug-ins.

The language-independent code generator traverses all nodes and edges in the
metamodel and creates a generic model of the program code to be generated. The
features of the modern programming languages (interfaces, classes, class and
interface inheritance, interface implementation, class fields, interface and class
properties, simple types, collections, event notifications) are modeled in a
language independent manner. Fig. 4 depicts the main steps of generation: from
the metamodel, language-independent models are generated, which are used to
generate source code in different languages, using the language plug-ins.

Language-independent
class model
for OS #1

Language-independent
Code Model Generator

Metamodel

Language-independent
class model
for OS #N

Language-independent
model of the common

interfaces for all OS-es

C#
code

Java
code

C#
code

Java
code

C#
code

Java
code

Figure 4
Main steps of generating domain-specific source code

Language plugins are responsible for generating a compilable code in the desired
target language by using the associated code model. For example, a simple string
property in the model will be transformed into a property in C# (because the
language supports properties), while it will become a getter-setter pair in Java
(because it is a convention for JavaBeans). If change notification is required, the
C# version will be generated using the so called Dependency Properties, which
provide two-way data-binding functionality in WPF [12], while the Java version
could use some third party data binding library. The language plug-ins also
validate that the given code model is correct, e.g. the class names are valid
identifiers in the destination language and there is no conflict between them.

The Code Generator creates a representation of the models the following way:

• Each node in the metamodel is represented by a set of interfaces and
corresponding implementation classes per Object Space. Fig. 5 shows the
generated interfaces and the classes for one OS (UI) for a sample node
called ‘Book’, which has a complex property named BookData.

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 329

• Each attribute of a node is represented by a property in the attribute
interface corresponding to the node (BookAttributes in Fig. 5) and in the
implementation classes (BookAttributes_UI for the UI OS). Attributes
with higher multiplicities are represented by generic collections.
Complex attributes can be defined by defining so called complex types,
which are represented by distinct classes (See CTBookData interface and
CTBookData_UI class in Fig. 5).

Figure 5

The interfaces and classes related to the Book node

• Inheritance edges are represented by interface inheritances. This can be
seen in Fig. 6, where Novel inherits from Book.

Book

INodeBase
Interface

BookInternal

Book
Interface

Novel

Book
Interface

NovelInternal

Novel
Interface

BookAttributes

IAttributes
Interface

Properties

NovelAttributes

BookAttributes
Interface

Properties

Attributes

Attributes

Figure 6

The interfaces related to the Book and Novel node, which are in inheritance relation

• Containment and association edges are represented by interfaces and
implementation classes similar to the nodes and reference properties for
the two endpoints of the edge. Depending on navigability, there are also
references in the nodes for the connecting edges, with different getter
methods for the relations connecting with the left ends and the right ends.

L. Siroki et al.
Universal Domain-Specific Code Generator

 330

• Edge attributes are represented in the interfaces and implementation
classes corresponding to the edge, similarly as for the node attributes.

• For convenience and performance reasons, the nodes on the other end of
the relations are reachable directly through another property. The
property for the collection of edge objects of the same type is named after
the relation’s name, whereas the property for the collection of the
neighboring nodes is named after the other side’s role name. Note that
edges in the metamodel have InstanceName, LeftRole and RightRole
properties.

For large models, it would not be feasible to load the whole model into the
memory at once, so in some of the implementations, the related nodes or edges are
loaded lazily when the program tries to access the property which is used for
getting the connecting edges or neighbouring nodes. The loaded results are then
stored in a field, and later no reload is necessary. The properties of the data
storage classes increase the usability, but do not increase the memory footprint of
the objects, because properties are class methods in practice.

After generating the source codes, they are compiled into DLLs by using
CodeDOM in the case of the .NET platform. These compiled DLLs can be loaded
at run-time without restarting the program. This feature makes possible that after
creating a metamodel, a model conforming to this newly created metamodel can
also be created. In this case the Generator creates the necessary VMF and VXF
interfaces and classes and compiles them. Generated code that is not .NET-
specific, can be used by other modeling tools.

CodeDOM could be used also for source code generation, but it has some
bottlenecks, e.g. it can only generate source for a few of the .NET platform
languages, and does not support every programming construct which we would
like to use.

Conclusions

Domain-specific visual languages became essential in software engineering.
Domain-specific modeler tools capable of displaying, editing and transforming
visual models are required in many cases. There exist several applications for this
purpose, but the requirements for these tools are increasing. We have implemented
three versions of our modeling and transformation tool, VMTS before. Based on
our experiences we found four main requirements that a domain-specific
framework should fulfill. (i) The modeling framework must support the diversity
of the domains. In VMTS, models are represented by attributed graphs.
Metamodels can be defined to determine what kind of model elements can be used
in the domain model. (ii) There is a need for various input/output formats. Most
existing tools use their own storage types, or some domain-specific standard file
format that are hard coded and cannot be changed. The new VMTS supports
multiple model repository types and can be extended by new ones easily. This is

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 331

accomplished by using storage-specific export-import classes, which are generated
automatically for each domain separately for performance reasons. (iii) The
framework should provide a way to change, or evaluate models. VMTS provides a
model transformation engine and simplifies to create custom model traversers
based on the code generator. (iv) The framework should use the computing
resources efficiently to provide good performance even when dealing with large
models. Also the models should be visualizable and visually editable, thus, having
a notification mechanism for model changes is highly desirable. Moreover, for
some algorithms transaction support is required. VMTS addresses these
conflicting requirements in such a way that the Generator component is capable of
generating different implementations for the data structure storing the model.
These implementations share a common interface but can have different features.

The code generator component is an essential part of the new VMTS. The
Generator provides the functionality to create strongly typed representations of the
models and strongly typed utility classes to load and save the models using
different model repositories and formats. The component is also capable of
generating different implementations for the same domain. Furthermore, it can
produce the code in multiple languages, using language plugins. Therefore, the
code generator has two roles: On one hand it supports the VMTS by generating
the data structure for new models in C#. On the other hand it can generate the data
structure implementation in other languages for use in other applications.

We have elaborated the architecture of the generator and created implementation
for the ‘UI’ Object Space – which can be used for visual editing purposes – and
for the ‘XML’ EXIM – which stores the models in our XML format. We are
working on the new GUI, the Adaptive Modeler Studio and on other OS and
EXIM implementations. The code generator can be improved further to provide
more easier and general way for defining the transformation from the metamodel
to the representing source code. We are also working on a solution which allows
defining the metamodel of the language-independent code model and uses a
textual specification to transform the code model into source code.

Acknowledgement

The fund of ”Mobile Innovation Centre” has partly supported the activities
described in this paper.

References

[1] VMTS homepage: http://vmts.aut.bme.hu

[2] Eclipse homepage: http://www.eclipse.org

[3] Graphical Editing Framework: http://www.eclipse.org/gef/

[4] E. Gamma et al.: Design Patterns: Elements of Reusable Object-Oriented
Software Addison-Wesley Professional Computing Series)

L. Siroki et al.
Universal Domain-Specific Code Generator

 332

[5] Graphical Modeling Framework homepage: http://www.eclipse.org/gmf

[6] Eclipse Modeling Framework homepage: http://www.eclipse.org/emf

[7] Erhig, K. et al.: “Generation of Visual Editors as Eclipse Plug-Ins”,
http://www.tfs.cs.tu-berlin.de/~tigerprj, last visited on 2008. 08. 12.

[8] Minas, M.: Generating Meta-Model-based Freehand Editors, Electronic
Communications of the EASST, Proc. of 3rd International Workshop on
Graph Based Tools (GraBaTs'06), Natal (Brazil), 2006

[9] Lédeczi, Á. et al.: Composing Domain-Specific Design Environments,
IEEE Computer 34 (11), November, 2001, pp. 44-51

[10] Component Object Model homepage: http://www.microsoft.com/COM

[11] G. Mezei: Transformation-based support for visual languages, Ph.D.
Thesis, http://vmts.aut.bme.hu/GMezei_Thesis.pdf

[12] Nathan, A.: Windows Presentation Foundation, Pearson Education, 2007

