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1 Introduction

In this paper we present two recent applications of the theory of integrals based
on non-additive measures.

In [19] it was proven a Jensen type inequality for the Sugeno integral and
authors analyze the necessary conditions for the reverse Jensen’s inequality. In
this paper we show a Jensen type inequality for the pseudo-integral, in Section
2. Pseudo-analysis is a generalization of the classical analysis, where instead
of the field of real numbers in [7, 9, 13, 14, 15] a general semiring is defined on
a real interval.

Aggregation of countably infinitely many inputs occurs in applications, as
decision problems with an infinite jury, game theory with infinitely many play-
ers, etc. They enable a better understanding of decision problems with ex-
tremely huge juries, game theoretical problems with extremely many players,
etc., see [12, 17, 21]. In Section 3 we present some recent results on aggregation
functions with infinitely many inputs.

2 Jensen type inequality for pseudo-integral

Let [a, b] be a closed (in some cases semiclosed) subinterval of [−∞,∞]. We
consider here the total order ≤ on [a, b]. The operation ⊕ (pseudo-addition) is a
commutative, non-decreasing, associative function ⊕ : [a, b]×[a, b] → [a, b] with
a zero (neutral) element denoted by 0. Denote [a, b]+ = {x : x ∈ [a, b] , x ≥ 0}.
The operation ¯ (pseudo-multiplication) is a function ¯ : [a, b]× [a, b] → [a, b]
which is commutative, positively non-decreasing, i.e., x ≤ y implies x ¯ z ≤



y¯ z, z ∈ [a, b]+ ,associative and for which there exist a unit element 1 ∈ [a, b] ,
i.e., for each x ∈ [a, b] , 1¯x = x. We assume 0¯x = 0 and that ¯ is distributive
over ⊕, i.e.,

x¯ (y ⊕ z) = (x¯ y)⊕ (x¯ z)

The structure ([a, b] ,⊕,¯) is called a semiring (see [8, 13]). We suppose further
that the operations ⊕ and ¯ are continuous.

Let X be a non-empty set. Let A be a σ-algebra of subsets of X. A set
function m : A → [a, b]+ (or semiclosed interval) is a ⊕- measure if there hold
m (∅) = 0 (if ⊕ is not idempotent ), and m is σ-⊕-(decomposable) measure,
i.e., m (∪∞i=1Ai) =

⊕∞
i=1 m (Ai) holds for any sequence (Ai)n∈N of pairwise

disjoint sets from A. The characteristic function with values in a semiring is
defined with

χA(x) =
{

0 , x 6∈ A
1 , x ∈ A

.

An elementary (measurable) function is mapping e : X → [a, b] that has the

following representation e =
n⊕

i=1

ai¯χAi for ai ∈ [a, b] and sets Ai ∈ A disjoint

if ⊕ is nonidempotent. The pseudo-integral of a bounded measurable function
f : X → [a, b], (for which, if ⊕ is not idempotent for each ε > 0 there exists a
monotone ε-net in f (X)) is defined by

⊕∫

X

f ¯ dm = lim
n→∞

⊕∫

X

en(x)¯ dm,

where (en)n∈N is a sequence of elementary functions which converges uniformly
to f.

We shall consider the semiring with pseudo-operations for two completely
different cases.

The first case is when pseudo-operations are defined by a monotone and
continuous function g : [a, b] → [0,∞] , i.e., pseudo-operations are given with

x⊕ y = g−1(g(x) + g(y)) and x¯ y = g−1(g(x) · g(y)).

If the zero element for the pseudo-addition is a, we will consider increasing
generators. Then g (a) = 0 and g (b) = ∞. If the zero element for the pseudo-
addition is b, we will consider decreasing generators. Then g (b) = 0 and
g (a) = ∞.

The pseudo-integral reduces on g-integral, i.e.,

∫ ⊕

[c,d]

f(x)dx = g−1

(∫ d

c

g (f (x)) dx

)
.



The second case is when the semiring is of the form ([a, b] , max,¯) , i.e.,
pseudo-addition is idempotent, and the pseudo-multiplication not. Here pseudo-
integral is given with

∫ ⊕

R
f ¯ dm = sup

x∈R
(f (x)¯ ψ (x)) ,

where function ψ defines sup-measure m.
Any sup-measure generated as essential supremum of a continuous density

can be obtained as a limit of pseudo-additive measures with respect to gener-
ated pseudo-addition ([10]).

The well-known Jensen inequality is a part of the classical mathematical
analysis.

Theorem 1 Let h be real and integrable function on [0, 1], a < h (x) < b,
x ∈ [0, 1] and ϕ a convex function on (a, b). Then

ϕ

(∫ 1

0

h(x)dx

)
6

∫ 1

0

ϕ (h (x)) dx.

We have proved in [16] the following generalization of Jensen inequality.

Theorem 2 Let Φ : [a, b] → [a, b] be a convex and nonincreasing function. If
an additive generator g : [a, b] → [a, b] of the pseudo-adition ⊕ is a convex and
increasing function, then for any measurable function f : [0, 1] → [a, b] holds:

Φ

(∫ ⊕

[0,1]

f(x)dx

)
≤

∫ ⊕

[0,1]

Φ(f (x)) dx. (1)

Example 3 (i) Let g(x) = xα for some α ∈ [1,∞) . The corresponding
pseudo-operations are x ⊕ y = α

√
xα + yα and x ¯ y = xy. Then (1)

reduces on the following inequality

Φ

(
α

√∫

[0,1]

f(x)α dx

)
6 α

√∫

[0,1]

Φ(f (x))α
dx.

(ii) Let g(x) = ex. The corresponding pseudo-operations are x⊕y = log (ex + ey)
and x¯ y = x + y. Then (1) reduces on the following inequality

Φ

(
ln

∫

[0,1]

ef(x) dx

)
6 ln

(∫

[0,1]

eΦ(f(x)) dx

)
.

Now we consider the second case, when ⊕ = max, and ¯ = g−1(g(x)g(y)).
Using the result from [10] there was proved in [16] the following generalization
of the Jensen inequality.



Theorem 4 Let Φ : [a, b] → [a, b] be a convex and nonincreasing function, and
¯ is represented by a convex and increasing multiplicative generator g. Then
for any continuous function f : [0, 1] → [a, b] holds:

Φ

(∫ sup

[0,1]

f ¯ dm

)
6

∫ sup

[0,1]

Φ(f)¯ dm.

Example 5 Using Example 3(ii) we have that gλ(x) = eλx. Then

lim
λ→∞

1
λ

ln
(
eλx + eλy

)
= max(x, y),

and
x¯λ y = x + y.

Therefore Jensen type inequality from Theorem 4 reduces on

Φ (sup(f(x) + ψ(x))) 6 sup (Φ(f(x)) + ψ(x)) ,

where ψ defines sup-measure m.

3 Infinite aggregation functions

In this section, based on [3, 11], we present infinitary aggregation functions
on sequences possessing some a priori given properties, and we give the con-
nection with Choquet integral. We consider the set [0, 1]N of all sequences
x = (x1, x2, . . . , xi, . . . ), where xi ∈ [0, 1] (i ∈ N). The input space [0, 1]N

equipped with standard Cartesian ordering, (i.e., x 6 y means xi 6 yi, i ∈ N),
is a complete lattice with bottom element 0 = {0}N and top element 1 = {1}N.
We equip [0, 1]N with coordinatewise convergence, i.e., a sequence x(n) =
(x(n)

1 , x
(n)
2 , . . . , x

(n)
i , . . . ) from [0, 1]N converges to x = (x1, x2, . . . , xn, . . . ) ∈

[0, 1]N if and only if limn→∞ x
(n)
i = xi for all i ∈ N.

Definition 6 A function A(∞) : [0, 1]N → [0, 1] is an (infinitary) aggregation
function if it satisfies the following conditions:

(i) nondecreasing monotonicity, i.e., x 6 y implies A(∞)(x) 6 A(∞)(y).

(ii) A(∞)(0) = 0 and A(∞)(1) = 1.

Properties of these functions are defined similarly to the corresponding prop-
erties of n-ary aggregation functions ([1, 3, 20]).

Additivity of the aggregation function implies its comonotone additivity,
which yields its idempotence. On the other hand, there are no aggregation
functions A(∞) : [0, 1]N → [0, 1] which are both additive and symmetric.



Proposition 7 An additive function F : [0, 1]N → [0, 1] is homogeneous and
nondecreasing. If F satisfies additionally F(0) = 0 and F(1) = 1, then it is an
(infinitary) aggregation function.

Corollary 8 An aggregation function A(∞) : [0, 1]N → [0, 1] is additive and
continuous if and only if A(∞)(x) =

∑∞
n=1 wnxn for all x = (xn)n∈N ∈ [0, 1]N,

where (wn)n∈N ∈ [0, 1]N,
∑∞

n=1 wn = 1.

Remark 9 The arithmetic mean AM(n) : [0, 1]n → [0, 1] is characterized as the
unique n-ary additive symmetric aggregation function. Symmetry forces the
equality of weights w1 = · · · = wn = 1

n . However, requiring similar properties
on [0, 1]N can be reduced to looking for a sequence of weights (wn)n∈N ∈ [0, 1]N

such that all weights are equal and
∑∞

n=1 wn = 1. Evidently, such a sequence
of weights cannot exist.

The next result is derived from [2], see also [13].

Proposition 10 An aggregation function A(∞) : [0, 1]N → [0, 1] is comonotonic
additive and lower semicontinuous if and only if there is a lower semicontinu-
ous capacity (fuzzy measure) m : 2N → [0, 1] (for each nondecreasing sequence
(An)n∈N in 2N and for each A ∈ 2N, with (An)n∈N increasing to A, we have
limn→∞m(An) = m (∪n∈NAn)), such that

A(∞)(x) = (C)
∫

N
x dm =

∫ 1

0

m({i ∈ N | xi > t}) dt, (2)

i.e., A(∞) is the Choquet integral with respect to m. Note that for any E ⊂ N
we then have m(E) = A(1E).

The symmetry of A(∞) : [0, 1]N → [0, 1] when it is a Choquet integral-based
aggregation function is related to the symmetry of the corresponding capacity
m : 2N → [0, 1], i.e.,

m(A) = m({σ(n) | n ∈ A})
for all A ⊂ N and any bijective mapping σ : N → N. The symmetric capacity
play important role in the characterization of infinitary OWA operator [18] (for
finite OWA see [22]).

Definition 11 A comonotone additive symmetric aggregation function A(∞) :
[0, 1]N → [0, 1] is called an infinitary OWA operator.

Theorem 12 A mapping A(∞) : [0, 1]N → [0, 1] is an infinitary OWA operator
if and only if there exists a symmetric measure m : 2N → [0, 1] such that (2)
holds.

For a given extended aggregation function A : ∪n∈N [0, 1]n → [0, 1], we look
for an appropriate aggregation function A(∞) : [0, 1]N → [0, 1] somehow linked
to A. A natural approach is to define A(∞) as a limit of (A(n))n∈N,

A(∞)((xn)n∈N) := lim
n→∞

A(n)(x1, . . . , xn). (3)



If this limit exists, for any (xn)n∈N ∈ [0, 1]N, we accept A(∞) given by (3)
as an extension of A to the domain [0, 1]N, and we keep the notation A also for
A(∞) whenever appropriate. The aggregation function A is called countably
extendable.

Definition 13 An extended aggregation function A : ∪n∈N [0, 1]n → [0, 1] is
said to have a downwards (respectively, an upwards) attitude whenever, for
any n ∈ N and any x1, . . . , xn+1 ∈ [0, 1], we have A(x1, . . . , xn, xn+1) 6
A(x1, . . . , xn) (respectively, A(x1, . . . , xn, xn+1) > A(x1, . . . , xn)).

Proposition 14 (i) Each downwards (respectively, upwards) extended ag-
gregation function A : ∪n∈N [0, 1]n → [0, 1] is countably extendable.

(ii) Let T : ∪n∈N [0, 1]n → [0, 1] (respectively, S : ∪n∈N [0, 1]n → [0, 1]) be an
extended t-norm (respectively, extended t-conorm). Then T (respectively,
S) is countably extendable.
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