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Abstract: The concept of various type fuzzy flip-flops (F3) has already been proposed. We 
have done some investigations on a large scope of F3s based on different t-norms and 
conorms. Also we have shown that a few F3 types are suitable for realizing neurons in 
multilayer perceptrons. The aim of this paper is to present a comparison of the 
performance of several type neural networks based on fuzzy J-K and also fuzzy D flip-flops 
(the latter derived from the former type). The behavior of algebraic, Yager, Dombi and 
Hamacher type fuzzy flip-flop neural networks are presented. The best fitting t-norm and 
corresponding fuzzy flip-flop type will be presented in terms of function approximation 
capability. 
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1 Introduction 

Neural networks and fuzzy set theory has been the object of intense study and 
application, especially in the last decade. There are several manners to combine 
neural networks and fuzzy logic, which may differ essentially according to 
approaches and the tasks. With the use of fuzzy logic techniques, neural 
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computing can be integrated in symbolic reasoning to solve complex real world 
problems. In fact, artificial neural networks, expert systems, and fuzzy logic 
systems share common features and techniques in the context of approximate 
reasoning. This paper investigates the choice of function approximator for a neural 
network based fuzzy flip-flops. A fuzzy flip-flop network is proposed, in which an 
artificial neural network-like approach is designed to construct the knowledge 
base of an expert system. The approximation of a mathematical function (using 
examples in the form of input-output pairs) is a central issue in subjects as diverse 
as pattern recognition, control theory and statistics. We present some 
investigations on the usefulness of several logical connectives, followed by a 
purposeful fuzzy sequential system design in order to construct a network 
performing good learning and approximation. 

The paper is structured into five sections. After the introduction, in Section 2, we 
present the concept of a single fuzzy J-K flip-flop, using the fundamental equation 
as it was proposed in [10]. 

In Section 3, a comparative study of several types of fuzzy J-K flip-flop with 
feedback (case of K=1-Q), fuzzy D flip-flop (case of K=1-J) and a different 
interpretation to define fuzzy D flip-flop [1] based on various norms has been 
presented. 

Section 4 is devoted to the investigation of the F3 based neurons and the 
Multilayer Perceptrons (MLP) [8] constructed from them. We show that the 
proposed the Fuzzy Flip-Flop Neural Network (FNN) architecture it can be use for 
approximating various test functions. Comparison between different types of 
FNNs and the ideal tansig (hyperbolic tangent sigmoid transfer function) 
characteristics NN are presented in Section 5. 

2 The Concept of Fuzzy J-K Flip-Flop 

The fuzzy J-K flip-flop is an extended form of binary J-K flip-flop. In this 
approach the truth table for the J-K flip-flop is fuzzified, where the binary NOT, 
AND and OR operations are substituted by their fuzzy counterparts, i.e. fuzzy 
negation, t-norm, and co-norm respectively. The next state Q(t+1) of a J-K flip-
flop is characterized as a function of both the present state Q(t) and the two 
present inputs J(t) and K(t). For simplicity (t) is omitted in the next. The so called 
fundamental equation of J-K type fuzzy flip-flop [10] is 

( 1) ( ) ( ) ( )Q t J K J Q K Q+ = ∨¬ ∧ ∨ ∧ ¬ ∨¬      (1) 

where , ,¬ ∧ ∨  denote fuzzy operations (e.g. 1K K¬ = − ). As a matter of course, it 
is possible to substitute the standard operations by any other reasonable fuzzy 
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operation triplet (e.g. De-Morgan triplet), thus obtaining a multitude of various 
fuzzy flip-flop (F3) pairs. 

In [7] we studied the behavior of F3 based on various fuzzy operations. 

In the next Section we will give an overview of the different type J-K F3s, based 
on familiar norms well known from the literature, namely the algebraic, Yager, 
Dombi and Hamacher, using the standard complementation in every case. After 
introducing their characteristic equations we will illustrate their behavior by the 
graphs belonging to the next states of fuzzy flip-flops for typical values of Q, J 
and K. 

3 J-K F3s Based on Various Fuzzy Connectives 

The algebraic, Yager, Dombi and Hamacher t-norms, combined with the standard 
negation, was analyzed to investigate, weather and to what degree they present 
more or less sigmoidal (S-shaped) J-Q(t+1) characteristics in particular cases, 
when K=1-Q, K=1-J, with fixed value of Q. Algebraic t-norm presents non-
sigmoidal behavior, with piecewise linear characteristics and several breakpoints, 
but having the advantage of the hardware implementation of F3. Circuits based on 
algebraic norms are presented earlier in [9]. The implementation was done by 
using fuzzy gate circuits. 

3.1 Fuzzy J-K Flip-Flops Based on Some Classes of t-Norms 

Using the algebraic norms and the standard negation 

( , )Ai a b ab=         (2) 

( , )Au a b a b ab= + −        (3) 

( ) 1c a a= −         (4) 

The fundamental equation of the algebraic type fuzzy flip-flop [9] can be rewritten 
in the form 

( 1)Q t J Q JQ KQ+ = + − −       (5) 

Yager, in [11], proposed an infinite family of possible fuzzy operation pairs. The 
intersection of two fuzzy sets a and b applying the Yager t-norm has the 
expression 

1/( , ) 1 min 1, ((1 ) (1 ) )w w w
wi a b a b⎡ ⎤= − − + −⎣ ⎦   for [ ], 0,1∈a b    (6) 
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where values of parameter w lie within the open interval (0,∞ ). By the way for   
w = 1 it gives the Łukasiewicz t-norm. For simplicity we use the following 
denotation ( , )w wi a b a  i  b= . 

The dual expression of t-conorm is defined by 
1/( , ) min 1,( )w w w

wu a b a b⎡ ⎤= +⎣ ⎦     (7) 

for w as before. Similarly to (7) ( , )w wu a b a  u  b= . 

Using such as triplet, the maxterm form in the unified equation (1) can be 
rewritten as 

( )( ) ( ) ( ) ( )( )( 1) 1 1 1w w w w wQ t J  u K  i  J  u  Q  i  K  u Q+ = − − −    (8) 

Several values of parameter w in the Yager-norm were considered, in an effort to 
tune the J-Q(t+1) characteristics of the corresponding F3. 

The pair of Dombi-class operators (similarly, a De-Morgan triplet) are defined as 
follows [6]: 

( ) ( )
1/

1( , )
1 1/ 1 1/ 1

i a b a i  b=
a b

α α αα α
=

⎡ ⎤+ − + −⎣ ⎦

and

( ) ( )
1/

1( , )
1 1/ 1 1/ 1

u a b a u  b=
a b

α α αα α −− −
=

⎡ ⎤+ − + −⎣ ⎦

    (9) 

The unified equation of the next state can be expressed as 

( )( ) ( ) ( ) ( )( )( 1) 1 1 1Q t J  u K  i J  u  Q  i  K  u Qα α α α α+ = − − −               (10) 

Parameter α lies within the open interval (0,∞ ). If J = 0, K = 0 or Q = 0 (9) results 
in division by 0 the expressions are extended to their respective limit values. Both 
the Yager and the Dombi operators are classic (monotonic, commutative, 
associative and limit preserving) t-norms and co-norms. 

Hamacher t-norms are the following [6] and the unified equation (1) can be 
rewritten as 

( , )
(1 )( )H

abi a b
v v a b ab

=
+ − + −

, and (2 )( , )
1 (1 )H

a b v abu a b
v ab

+ − −
=

− −
          (11) 

for (0, )v∈ ∞   

( )( ) ( ) ( ) ( )( )( 1) 1 1 1H H H H HQ t J  u K  i J  u  Q  i  K  u Q+ = − − −              (12) 
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3.2 Fuzzy J-K flip-flop, K=1-Q (fuzzy J-K flip-flop with 
feedback) 

The next figures depict the behavior by the graphs belonging to the next states of 
different type fuzzy J-K flip-flops for various typical values of Q, J and K, in the 
particular case, when K=1-Q. Figure 1 bring example for non-signoidal F3s 
(algebraic types). Using the parameterized families of Yager, Dombi, Hamacher 
norms for typical parameter values, we obtained more or less S-shaped J-Q(t+1) 
characteristics. The sections of the 3D surface are approximately sigmoidal as it is 
shown in Figures 2-4. 

 

 

 

 

 

 

                     Figure 1              Figure 2 
                   Algebraic type J-K F3  Yager type J-K F3 w=2 

 

 

 

 

 

 

           Figure 3                Figure 4 
                Dombi type J-K F3 α=2  Hamacher type J-K F3 v=10 

3.3 Fuzzy J-K flip-flop, K=1-J (fuzzy D flip-flop) 

Connecting the inputs of the fuzzy J-K flip-flop in a particular way, namely, by 
applying an inverter in the connection of the input J to K, case of K=1-J, a fuzzy 
D flip-flop is obtained. Substituting K J¬ =  in equation (1) and let D=J, the 
fundamental equation of fuzzy D flip-flop will be 

( 1) ( ) ( ) ( )Q t D D D Q D Q+ = ∨ ∧ ∨ ∧ ∨¬                 (13) 
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Figures 5-8 show the behavior of the fuzzy D flip-flop introduced above, 
substituting to equation (13) the algebraic, Yager, Dombi and Hamacher norms. 
For a well selected parameter (i.e. w=2, α=2, v=10) and Q values, the J-Q(t+1) 
characteristics present nice quasi sigmoidal behavior. As an alternative approach, 
Choi and Tipnis [1] proposed an equation which exhibits the characteristics of a 
fuzzy D flip-flop, as follows 

( 1) ( ) ( ) ( )Q t D D Q Q D+ = ∧ ∨ ∧ ¬ ∨                 (14) 

 

 

 

 

 

 

Figure 5           Figure 6            Figure 7  
            Algebraic type D F3  Yager type D F3  Dombi type D F3 

 

 

 

 

 

 

                                Figure 8                               Figure 9 
   Hamacher type D F3   Hamacher type Choi D F3 

 

 

 

 

 

 

   Figure 10         Figure 11             Figure 12  
          Algebraic type Choi D F3  Yager type Choi D F3  Dombi type Choi D F3 
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We will refer to this new type of fuzzy D flip-flop as Choi type fuzzy D flip-flop 
(because of the first author B. Choi). Comparing the characteristical equation of 
the fuzzy D flip-flop (13), with expression (14), there is an essential difference 
between the two fuzzy flip-flops. Substituting D=J=1-K, the two formulas differ 
in the first member. D D D= ∨  holds only in the exceptional case, when the t-
conorm is idempotent. Idempotence for T and S means that [2] 

T(x,x) = x and S(x,x) = x for all [ ]0,1x∈ ; 

It can be proved [3] that t-norm T is idempotent iff T = min, and t-conorm S is 
idempotent iff S = max. For example, using the algebraic norm 

2( , ) 2Au a a a a a a a a a= + − ⋅ = ⋅ − =                 (15) 

is true only in the borderline cases, i.e. when 0a = , or 1a = . It is surprising how 
much the satisfaction of idempotence influences the behavior of the fuzzy D flip-
flops. Although, the J-Q(t+1) Choi fuzzy D flip-flop characteristics for Hamacher, 
algebraic, Yager and Dombi norms (Figures 9-12) also present approximately 
sigmoidal behavior. Comparing Figures 5-8 and 9-12 belonging to the two types 
of fuzzy D flip-flop with the same norms, it can be seen that, for the same value of 
Q, the curvature differs, which fact leads to a rather different behavior in the 
applications. 

4 The Fuzzy Flip-Flop-based Neurons 

Next, a fuzzy network is proposed, in which an artificial neural network-like 
approach is designed to construct the knowledge base of an expert system. 

We study the effect of applying some well know t-norms in the investigation of 
the F3 based neurons and the MLPs constructed from them. An interesting aspect 
of these F3s is that they have a certain convergent behavior when their input J is 
excited repeatedly. This convergent behavior guarantees the learning property of 
the networks constructed this way. 

In our approach the weighted input values are connected to input J of the fuzzy 
flip-flop based on a pair of fuzzy t-norm and t-conorm, having quasi-sigmoidal 
transfer characteristics. The output signal is then computed as the weighted sum of 
the input signals, transformed by the transfer function [4]. 

In this concept, K=1-Q (feedback J-K F3), or K=1-J (D F3) is proposed. When 
input K of the F3 is connected with output Q , or when input K is connected with J, 
an elementary fuzzy sequential unit with just one input is obtained. Now J can be 
considered as an equivalent of the traditional input of the neuron. The behavior of 
Choi type fuzzy D flip-flop was also evaluated for comparison. 
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From the neural networks perspective (regarding to the ability to use the learning 
and adaptation mechanisms used with classic neuron models), suitable t-norms 
may be deployable for defining fuzzy neurons. 

4.1 Fuzzy Flip-Flop Network 

A very commonly used architecture of neural network is the multilayer feed 
forward network, which allows signals to flow from the input units to the output 
units, in a forward direction. In general, two trainable layer networks with sigmoid 
transfer functions in the hidden layer and linear transfer functions in the output 
layer are universal approximators [5]. 

The model for the neural system now proposed is based on two hidden layers 
constituted from fuzzy flip-flop neurons. Networks now proposed are sensitive to 
the number of neurons in their hidden layers. Too few neurons can lead to 
underfitting, too many neurons can cause similarly undesired overfitting. The 
functions to be approximated are represented by a set of input/output pairs. All the 
input and output signals are distributed in the unit interval. During network 
training, the weights and thresholds are first initialized to small, random values. 

5 Function Approximation by Multilayer Networks 

5.1 Single Sine Wave (Various Norms) 

A fuzzy flip-flop based neural network, with a transfer function using algebraic, 
Yager, Dombi and Hamacher operators in the hidden layers furthermore a linear 
transfer function in the output layer, was used to approximate a single period of 
the sine wave. The number of neurons was chosen after experimenting with 
different size hidden layers. Smaller neuron numbers in the hidden layer result in 
worse approximation properties, while increasing the neuron number results in 
better performance, but longer simulation time. The training was performed for 
different size hidden layers and finally a 1-4-4-1 FNN was proposed as good and 
fast enough. 

Different random initial weights were used and the network was trained with 
Levenberg-Marquardt algorithm with 100 maximum numbers of epochs as more 
or less sufficient. 

In our present experiments we forced Q = 0.32, because this value ensured rather 
good learning abilities. We suppose however that flexible Q values might lead to 
even better learning and approximation properties in the future. 
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The expression of the function to be approximated was: 

y = sin(c1*x)/2+0.5,                  (16) 

where the input vector x generated a sinusoidal output y. The value of constant c1 
was chosen 0.07, to keep the wavelet in the unit interval. The parameter of Dombi, 
Yager and Hamacher operators were fixed α=2, w=2 and v=10, which values 
provided good learning and convergent properties. Figure 13 presents the graphs 
of the simulations in case of fuzzy J-K flip-flop with feedback based neural 
network. It can be observed that the algebraic F3 provides a fuzzy neuron with 
rather bad learning ability. Figures 15 and 17 compare the behavior of fuzzy D 
flip-flop and Choi type fuzzy D flip-flop based NNs. Table 1 summarizes the 100 
runs average approximation goodness, by indicating the Mean Squared Error 
(MSE) of the training values for each of the ideal tansig, algebraic, Yager, Dombi 
and Hamacher types of FNNs. Comparing the minimum and median (median 
value of the array) values, the Yager and Dombi types FNNs performed best using 
fuzzy J-K flip-flop with feedback, thus they can be considered as rather good 
function approximators. It is interesting that according to the numerical 
illustrations the average of 100 runs mean squared errors in case of fuzzy D flip-
flop and Choi type fuzzy D flip-flop type NNs, the best results after the idealistic 
tansig function is given by the Hamacher and Yager F3, which is followed by the 
Dombi and finally the algebraic one. The Hamacher and Yager types FNNs have 
excellent approximation properties. It is surprising how much the satisfaction of 
idempotence influences the behavior of the fuzzy D flip-flop based NN. 
Comparing Figures 15 and 17 belonging to the two types of fuzzy D flip-flop with 
the same norms, it can be seen that, for the same value of Q, the value of the MSE 
differs, which fact leads to a rather different behavior in the applications. 

5.2 Two Superimposed Sine Waves with Different Period 
Lengths (Various Norms) 

When instead of a single sine wave a more complex wave form was used, in order 
to obtain the same results we increased the neuron numbers in the hidden layers to 
8 neurons in each. We proposed a 1-8-8-1 F3 based neural network to approximate 
a combination of two sine wave forms with different period lengths described with 
the equation 

y = sin(c1*x)*sin(c2*x)/2+0.5.               (17) 

The values of constants c1 and c2 were selected to produce a frequency proportion 
of the two components 1:0.35. Same as in subsection 5.1 we compared the 
network function approximation capability in the above mentioned cases as is 
shown in Figures 14, 16 and 18. 
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It is interesting that according to the numerical illustrations, the average of 100 
runs mean squared error of training and validation values (Table 2), the sequence 
is again the same as it was in the case of the single sine wave. 

 

 

 

 

 

 

                   Figure 13                                     Figure 14 
Simulation result fuzzy J-K FNN           Simulation result fuzzy J-K FNN  

 

 

 

 

 

 Figure 15                                 Figure 16 
Simulation result fuzzy D FNN                   Simulation result fuzzy D FNN  

TABLE 1 
SINGLE SINE WAVE 

F3 Neuron 
Type JK-FF D-FF CHOID-FF 

 Minimum Median Minimum Median Minimum Median 
tansig 2.72x10-11 2.54x10-8 6.64x10-14 3.31x10-8 2.63x10-11 4.29x10-8 
Algebraic 3.38x10-3 6.38x10-2 1.17x10-4 1.30x10-2 7.63x10-3 5.92x10-2 
Yager 8.43x10-7 3.57x10-2 2.15x10-6 6.51x10-3 7.61x10-5 2.59x10-2 
Dombi 3.53x10-8 4.89x10-2 7.20x10-2 2.17x10-1 9.30x10-2 1.90x10-1 
Hamacher 7.64x10-6 1.21x10-2 2.02x10-7 9.31x10-3 1.79x10-4 3.42x10-2 
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Figure 17                                 Figure 18 
Simulation result fuzzy ChoiD FNN               Simulation result fuzzy ChoiD FNN  

TABLE 2 
TWO SINE WAVES 

F3 Neuron 
Type JK-FF D-FF CHOID-FF 

 Minimum Median Minimum Median Minimum Median 
tansig 2.96x10-8 1.61x10-6 3.13x10-8 9.05x10-7 1.88x10-8 1.53x10-6 
Algebraic 2.17x10-2 4.73x10-2 1.56x10-4 2.01x10-2 1.50x10-2 4.52x10-2 
Yager 8.04x10-6 2.12x10-2 2.78x10-6 4.37x10-3 2.51x10-4 1.27x10-2 
Dombi 9.13x10-5 3.19x10-2 4.88x10-2 1.50x10-1 5.12x10-2 1.40x10-1 
Hamacher 3.50x10-5 2.25x10-2 3.56x10-6 3.20x10-3 9.67x10-4 2.62x10-2 

Conclusions 

In this paper, we proposed the use of fuzzy flip-flop based neural network (FNN) 
for performing function approximation based on a combination of test functions. 
We compared the performance three different types of FNNs. Obviously, the 
performance of FNNs depends from the choice of different fuzzy flip-flop types. 
The results were promising in the sens that the proposed fuzzy D flip-flop based 
NN using Yager and Hamacher norms was found to be superior to the other 
approaches in approximating of test functions. In the future we plan to do 
simulations with a wide range of different functions and patterns to confirm our 
hypothesis. It may be worth while comparing a multitude of Yager, Hamacher and 
Dombi type F3s when parameters are assuming their whole range. 
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