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Abstract: The paper proposes the stable design of a new generation of fuzzy control systems 
using Mamdani PI-fuzzy controllers (PI-FCs) in four control system structures based on the 
combination beetween feedback control structures and Iterative Learning Control (ILC) 
algorithms. The design is backed up by a stability analysis method expressed in terms of the 
specific matrix approach with nonlinearity vectors defined in the matrix space. Part of the 
theoretical results is validated in controlling servo systems considered as second-order 
integral type benchmarks. 
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1 Introduction 

Iterative Learning Control (ILC) accepts that control system (CS) performance 
indices executing repetitively the same tasks can be improved using previous 
experiments concerning CS operation. The aim of ILC deals with the iterative 
solving of a parametric optimisation problem, called learning [1], which ensures 
the minimization of an objective function which specifies CS performance indices. 
In order to solve this optimisation problem there are implemented ILC algorithms 
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to ensure CS performance enhancement from one experiment / iteration to 
another. Information acquired from previous experiments is included using 
adequate memorizing techniques. 

The ILC algorithms generate an open-loop signal, which does the approximate 
inversion of the plant model to guarantee reference tracking and repetitive 
disturbance rejection. In order to cope with non-anticipative disturbances the ILC 
algorithms are combined with controllers resulting in several design techniques. 
They include: 

- learning functions of PD-type PD [2-5], which allow controller tuning 
without requiring the detailed mathematical model of the controlled plant, 

- learning functions based on the plant model inversion [6, 7], which guarantee 
a rapid convergence but are in turn sensitive to modelling errors, 

- H∞ techniques [8, 9], which permit the design of robust and convergent ILC 
algorithms but having shortcomings in CS dynamic performance, 

- quadratic optimisation (Q-ILC) [10-12], based on minimizing integral indices 
expressed as quadratic objective functions. 

Various applications of ILC have been reported in robot control [4, 13-15], 
machine-tools control [16], electrical and electromechanical drive control [17, 18], 
autonomous vehicle control [19], ABS control [20], thermal plant control [21, 22], 
chemical plant control [23], and those specific to servo systems in computing 
systems [24, 25]. 

The main advantages of ILC with respect to other control or feedforward 
approaches are [1, 4, 24]: 

- ILC has anticipatory character and can ensure the compensation for repetitive 
external disturbances by learning (associated with memorization) based on 
previous iterations, 

- ILC does not require knowing the variations of reference and disturbance 
inputs being necessary just repeating these signals from one iteration to 
another, 

- in some well-stated conditions ILC ensure the CS robustness with respect to 
process modelling uncertainties. 

However, the ILC technique has the following shortcomings [1, 15, 25]: 

- the formalization of the connection between robustness and dynamic and 
steady-state CS performance on the one hand and ensuring the best of these 
requirements simultaneously on the other hand is not done, 

- the situations in which the reference and disturbance inputs do not have 
repetitive variations are not treated, 
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- the convergence conditions related generally to any iterative technique are not 
analyzed in the general framework. 

The aim of combining the ILC technique with fuzzy control is to achieve CS 
performance enhancement in conditions of low-cost [26-28]. The CS performance 
enhancement results from merging in the same CS structure the benefits of both 
feedback (due to fuzzy control) and feedforward compensation (due to ILC). This 
paper presents new fuzzy control system structures based on ILC algorithms in 
connection with Mamdani PI-fuzzy controllers (PI-FCs). However the systematic 
design of fuzzy CSs is needed. One way to support these investigations is the 
stability analysis of the fuzzy control systems with ILC [29]. The stability analysis 
method is based on the formulation and application of rather general results that 
employ the specific matrix approach expressed in terms of the nonlinearity vectors 
applied in the matrix space [30-32]. This approach has been applied in [33] in 
connection with Iterative Feedback Tuning in the framework of fuzzy control. The 
combination of that stability analysis method with ILC in the framework of fuzzy 
control represents an original approach suggested here. 

The paper is organized as follows. The next Section is focused on the problem 
setting in ILC, the fuzzy CS structures incorporating ILC and their design. Section 
3 is dedicated to the new stability method that enables the stable design of the 
method for the Mamdani PI-FCs. Section 5 deals with the presentation of some 
real-time experimental results for a case study concerning DC-based servo system 
speed control. The conclusions are presented at the end. 

2 Overview on Iterative Learning Control. Fuzzy 
Control System Structures and Design 

The controlled plant is considered characterized by the following discrete-time 
linear time-invariant SISO system: 

( ) )()()( kdkuqPky jj += , (1) 

where: y – controlled output, u – control signal, d – exogenous input signal (for 
example, load-type disturbance input) that repeats each iteration, k –index of 
current sampling interval, j – index of current iteration / trial, q – forward time-
shift operator, P(q) – proper rational function of the plant, with a delay of mTs 
(having the relative degree of *Nm∈ ), Ts – sampling period. P(q) is supposed to 
be asymptotically stable. If not, it can be stabilized firstly in a conventional 
control system, the ILC being applied afterwards to the closed-loop system. 

Considering the following sequences of N samples of plant inputs and output and 
the reference input sequence is r(k): 
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the control error signal is 

( ) )()( kykrke jj −= . (3) 

A widely used ILC algorithm, the Q-ILC algorithm [1, 3, 8, 14]: 

( ) ( ) )]1()()[(1 ++=+ keqLkuqQku jjj , (4) 

makes use of Q(q) referred to as the Q-filter and L(q) as the learning function. 

The lifted forms of mathematical models can be used to analyze the CSs based on 
ILC with the structure resulted from (1) and (4) in the time-domain. The z-domain 
mathematical models can be expressed, too [28, 29, 34]. The ILC algorithm (4) 
can be combined with conventional control systems with feedback controllers in 
two ways at least generating corresponding control system structures: 

- a serial form, where the ILC control signal uj(k) is added to the reference 
input before the feedback loop, 

- a parallel form, where the ILC control signal uj(k) is added to the control 
signal produced by the feedback controller. 

Other versions of ILC algorithms are: 

- the current-iteration ILC algorithm [1]: 

( ) ( ) )1()()]1()()[(1 ++++=+ keqCkeqLkuqQku jjjj , (5) 

where C(q) stands for the proper rational function of the feedback controller, 

- the PD-type learning function in two forms: 

( ) ( ) ( ) )]()1([11 kekekkekkuku jjdjpjj −++++=+ , (6) 

( ) ( ) ( ) )]()1([1 kekekkekkuku jjdjpjj −+++=+ , (7) 

where kp is the proportional gain and ki is the derivative gain. 

The fuzzy CS structures incorporating ILC result directly by inserting fuzzy logic 
blocks to the linear CS structures. Their low-cost versions are presented in Figs. 1-
4. The following nomenclature has been used in all four fuzzy CS structures: 
ILCA – Iterative Learning Control algorithm, FILCA – Fuzzy Iterative Learning 
Control algorithm, F – feedforward filter, r1 – filtered reference input, d1, d2, d3 – 
load-type disturbance input types, assumed to be repetitive, M – memory block, 
FC – fuzzy controller, B-FC – basic two input-single output (TISO) fuzzy 
controller. 
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Figure 1 

Fuzzy control system structure with serial ILC 

 
Figure 2 

Fuzzy control system structure with parallel ILC 

 
Figure 3 

Fuzzy control system structure with current-iteration ILC 

The two-level fuzzy CS structure presented in Fig. 4 is based on the fuzzification 
of the PD block in (6) and (7). The block with the transfer function 1−q  is 
necessary only in the fuzzified version corresponding to (7). That is necessary 
because in conventional ILC algorithms it is difficult to ensure the compromise to 
both converged error performance and robustness. Ensuring these requirements 
simultaneously can be achieved by means of the correct tuning of B-FC placed on 
the higher level in Fig. 4. In fact B-FC is a variable structure controller that 
ensures the bumpless interpolation between separately designed linear controllers. 
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Figure 4 

Fuzzy control system structure with PD-type learning function 

Other fuzzy control system structures are possible also by the proper combination 
of the first four ones. The general design method for the fuzzy CS structures in 
Figs. 1-3 will be presented as follows under a unified expression concentrated on 
Mamdani PI-FCs with the structure presented in Fig. 5 and membership function 
shapes shown in Fig. 6. The key element in Fig. 5 is the basic fuzzy controller, B-
FC, a TISO nonlinear system that employs Mamdani’s MAX-MIN compositional 
rule of inference and the centre of gravity method for defuzzification. 

 
Figure 5 

PI-fuzzy control system structure without scaling factors 

 
Figure 6 

Membership function shapes 
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The design method consists of the following design steps: 

I   Steps of the ILCA tuning which are different from one structure to another one. 

II   Steps of the linear controller design, the initial controller replacing the block 
FC in the fuzzy control systems structures and representing in fact a two-degree-
of-freedom (2-DOF) PI controller: 

- tune the feedforward filter F(s) (in continuous-time) and the continuous-time 
linear PI controller with the transfer function C(s): 

ciCiCic kTksTkssTksC =+=+=   )],/(11[/)1()( , (8) 

with kC – controller gain and Ti – integral time constant, using a continuous-
time design method depending on the controlled plant and on the desired / 
imposed CS performance indices, 

- choose the sampling period, Ts, according to the requirements of quasi-
continuous digital control, 

- express the discrete-time equation of the incremental digital PI controller: 

)]()([()()()( kekeKkeKkeKku PIP ⋅α+Δ=+Δ=Δ , (9) 

with Δx standing generally for the increment of a certain variable, x, and 
calculate the parameters {KP, KI, α}. For example, the expressions of these 
parameters are presented in (10) in case of Tustin’s method: 

)2/(2/   ,/  )],2/(1[ sisPIisCIisCP TTTKKTTkKTTkK −==α=−= . (10) 

III   Steps of the PI-fuzzy controller design based on the transfer of results from 
the linear case to the fuzzy one in terms of the modal equivalence principle: 

- set the value of the controller parameter Be according to the experience of the 
control systems designer, 

- apply the modal equivalence principle: 

eIuee BKBBB =α= ΔΔ , . (11) 

The stability analysis to be presented in Section 4 will offer useful information to 
setting the value of the free parameter Be. Thus it is justified to consider the design 
method presented here as stable design method if it is combined with a stability 
analysis algorithm expressed from the stability analysis method. 
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4 Stability Analysis Method 

The nonlinear function characteristic to symmetric nonlinearities (specific to FCs) 
is considered in (12) to fulfil Dirichlet’s condition: 

∑
∞

=
+ +==

0
1 ])1sin[()(

λ
λ θ

πλ eaeNu . (12) 

The matrix form of (12) results if it has a finite number of terms written for )1( +λ  
values of the input e: 

,1,1,

,])12[sin[(,]...[

,]...[, 

1,1,121
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jij
T
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where he > 0 is a step, b is the specific vector of the mean nonlinearity and z is 
referred to as the nonlinearity vector [32]. But σ is a regular matrix and the 
following relationship holds in case of the FCs accepted in Section 3: 

,1,1),sin(

,)](...)()([

,]/})12{(2[,

121

1,1,1

+λ=ω=

=
θ
π

−==

+λ

+λ=

itAe

AnAnAn

AAjJ

i

T

jiiiRR

n

InbI

 (14) 

where n is the equivalent gain vector, J1 is the Bessel function of the first kind and 
Aj stand for the input (e) magnitudes. The following relationships results from the 
last two ones: 

1, −== σIHnzH R . (15) 

(15) highlights a linear transform with the regular matrix H independent of the 
nonlinearity involved. Therefore it can be viewed as a convenient linearization. 

The matrix plane approach starts with the expression (16) of the characteristic 
equation of the closed-loop FCS supposed to be of n-th order, where the nonlinear 
part (here the FC is involved) is expressed by the equivalent gains as part of the 
vector n: 

0... 01
1

1 =++++ −
− asasasa n

n
n

n . (16) 

The quasi-continuous digital control is accepted in relation with (16) and it 
justifies the continuous-time approach. The coefficients in (16) depend on the 
parameters of the linear part and the equivalent gains of the nonlinear one. Next 
the following matrix depending on the frequencies is defined in (17): 

pknr
k
rkk ,0,,1]))2/cos()2/[(sin( ==ωπ+π=Ω , (17) 
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and the following matrices can be expressed: 
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where the matrices 0P  and 0Q  correspond to the steady-state regime, 
σP  and 

σQ  
to the transients, kπ  and 'kπ  are polynomials in the variable ,0 , <σσ  from 

)1(  2 −=ω+σ= iis , with the expressions according to [32]. The matrix plane is 
defined as the matrix M is defined having double elements: 
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taken from the elements of the matrices ΩP  and ΩQ  valid in both steady-state 
regimes and transients: 

qjmiijqjmiij dc
,1,,1,1,,1

][,][
====

== ΩQΩP . (20) 

Two step-type curves are also defined: 

1,1,  ,1,1,  ,  , )1()1( −=βε−=γρ<<<< β+γλβε+ρρη qmdddccc . (21) 

The intersection of the curves for c = d = 0 gives the so-called coincidence points 
(in the matrix plane) corresponding to the limit cycles with solutions expressed as 
the two coordinates in the matrix plane, the magnitude Ai and pulsation 
(frequency) ω of the input signal fed to the nonlinearity. 

Concluding, the stability analysis method can be expressed as follows and it can 
be applied in case of fuzzy IFT-based fuzzy CS structures [33]: 
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- Step 1. Express the linearized characteristic equation of the fuzzy CS. 

- Step 2. Calculate the matrix M in (19) and the step-type curves in (21). 

- Step 3. Search for the limit cycles by calculating the intersection of the step-
type curves. If no limit cycles exist, then the fuzzy CS will be stable. If yes, 
continue with the step 4. 

- Step 4. A limit cycle exists and the fuzzy CS admits a periodic solution 
sufficiently close to )sin( 00 tAe ω= . The limit cycle is stable if for a 
sufficiently small value of σ  the coincidence point is placed in the matrix 
plane at a transient magnitude that is larger than the magnitude A0 of the limit 
cycle. Hence the system will be stable. Otherwise the system will be 
unstable. 

5 Real-time Experimental Results 

A case study focused on a PI-fuzzy controller design for the class of plants with 
the transfer function P(s) characterizing simplified mathematical models used in 
servo systems in the framework of mechatronics and embedded systems: 

)]1(/[)( sTsksP ΣP += , (22) 

where kP is the controlled plant gain and TΣ is the small time constant or an 
equivalent time constant as sum of parasitic time constants. One solution to cope 
with the accepted class of plants is represented by PI control. A simple and 
efficient way to tune the parameters of the PI controller dedicated to this plant is 
represented by the Extended Symmetrical Optimum (ESO) method [35], 
characterized by only one design parameter, β. The choice of β within the domain 
1 < β < 20, leads to the modification of the CS performance indices (σ1 – 
overshoot, Σ= Ttt rr /ˆ  – normalized rise time, Σ= Ttt ss /ˆ  – normalized settling time 
defined in the unit step modification of r, φm – phase margin) according to 
designer’s option and to a compromise to these performance indices using the 
diagrams presented in Fig. 7 in the situation without feedforward filter. The 
presence of the feedforward filter with the transfer function F(s) improves the CS 
performance indices. The PI tuning conditions, specific to the ESO method, are: 

ΣiPΣc TTkTk β=ββ=   ),/(1 2 , (23) 

and they highlight the presence of just β as design parameter. 

The experimental setup is the AMIRA DR300 laboratory DC drive used as 
benchmark in speed control applications. The DC motor is loaded using a current 
controlled DC generator, mounted on the same shaft, and the drive has built-in 
analog current controllers for both DC machines having rated speed equal to 3000 
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rpm, rated power equal to 30 W, and rated current equal to 2 A. The speed control 
of the DC motor is digitally implemented using an A/D-D/A converter card. The 
speed sensors are a tacho generator and an additional incremental rotary encoder 
mounted at the free drive-shaft. A picture of the experimental setup (without the 
computer connected to the controlled plant), shot from the Intelligent Control 
Systems Laboratory of “Politehnica” University of Timisoara, is shown in Fig. 8. 

 
Figure 7 

Control system performance indices versus β in the situation without feedforward filter 

 
Figure 8 

Experimental setup without computer connected 

The mathematical model of the plant can be well approximated by the transfer 
function P(s) in (20), with kP = 4900 and TΣ = 0.035 s. The design method 
proposed in Section 3 is applied, and for the sake of simplicity only the main 
parameter values are presented. The method starts with the choice of the design 
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parameter, β = 6. The following values of the PI-fuzzy controller tuning 
parameters have been obtained: Be = 0.3 (obtained from the stability analysis 
method applied as illustrated in Section 4), BΔe = 0.03, BΔu = 0.0021, and the 
ILCA employs a Q-filter of 20 Hz bandwidth and a PD-type learning function. 

Part of the real-time experimental results, consisting of the variations of r and y 
versus time, are presented in Fig. 9. The results concern the linear CS (with linear 
PI controller) in Fig. 9 (a) and the fuzzy CS in Fig. 9 (b), without load in the upper 
pictures and with a 5 s period of 10% d2-type rated load and r = 2500 rpm in the 
lower ones. 

 
                                      (a)                                                                                   (b) 

Figure 9 
Control system behaviour with PI controller (a) and PI-fuzzy controller (b) 

Conclusions 

The paper deals with the stable design of fuzzy control system structures 
combined with Iterative Learning Control. The aim was to achieve the control 
system performance enhancement for low-cost automation solutions. However 
although the design and controller structures are simple and transparent, the 
stability analysis method is not simple. It is computationally demanding. 
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Real-time experimental results validate one of the fuzzy control system structures 
and the design method. The validation corresponds to Mamdani PI-fuzzy 
controllers. The application to other fuzzy controllers is not straightforward. 

Future research will be concentrated on deriving simple and transparent design 
methods for all fuzzy control system structures suggested in this paper 
accompanied by systematic analyses in all situations. A stability analysis 
algorithm will be designed and implemented based on the four-step stability 
analysis method suggested in Section 4. 
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