
Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 369

Concurrent Programming Method for
Embedded Systems

Norbert Schramm

UVA, 24000 Subotica, Serbia
norbert.schramm@gmail.com

Anita Sabo
Polytechnical Engineering College Subotica
M. Oreškovića 16, 24000 Subotica, Serbia
saboanita@vts.su.ac.yu

Abstract: The task of programming concurrent systems is substantially more difficult than
the task of programming sequential systems with respect to both correctness and efficiency.
The tendency in development of embedded hardware and processors are shifting to multi
core and multiprocessor setups as well. This means that the problem of easy concurrency is
an important problem for embedded systems as well. There are numerous solutions for the
problem of concurrency, but not with embedded systems in mind. Due to the constrains
of embedded hardware and use cases of embedded systems, specific concurrency solutions
are required. In this paper we present a solution which is targeted for embedded systems
and builds on existing concurrency algorithms and solutions. The presented method
emphasizes on the development and design of concurrent software. In the design of the
presented method human factor was taken into consideration as the major influential fact
in the successful development of concurrent applications.

1 Introduction

In Section II we present the current stage of concurrent programming. In Section
III we investigate the current support and problems of concurrent programming in
embedded systems. In section IV we present a model developed by the authors of
this paper for concurrent programming which builds on existing concurrency
algorithms. We present in detail the architecture, the principles, the advantages
and disadvantages of the model. In the last section we present an overview of the
model and the conclusion of the authors.

N. Schramm et al.
Concurrent Programming Method for Embedded Systems

 370

2 Concurrent Programming

Concurrent computing is the concurrent (simultaneous) execution of multiple
interacting computational tasks. These tasks may be implemented as separate
programs, or as a set of processes or threads created by a single program. The
tasks may also be executing on a single processor, several processors in close
proximity, or distributed across a network. Concurrent computing is related to
parallel computing, but focuses more on the interactions between tasks. Correct
sequencing of the interactions or communications between different tasks, and the
coordination of access to resources that are shared between tasks, are key concerns
during the design of concurrent computing systems. In some concurrent
computing systems communication between the concurrent components is hidden
from the programmer, while in others it must be handled explicitly Explicit
communication can be divided into two classes.

2.1 Shared Memory Communication

Concurrent components communicate by altering the contents of shared memory
location. This style of concurrent programming usually requires the application of
some form of locking (e.g., mutexes (means mutual exclusion), semaphores, or
monitors) to coordinate between threads. Shared memory communication can be
achieved with the use of Software Transactional Memory (STM) [1, 2, 3].
Software Transactional Memory (STM) is an abstraction for concurrent
communication mechanism analogous to database transactions for controlling
access to shared memory. The main benefits of STM are composability and
modularity. That is, using STM you can write concurrent abstractions that can be
easily composed with any other abstraction built using STM, without exposing the
details of how your abstraction ensures safety.

2.2 Message Passing Communication

Concurrent components communicate by exchanging messages. The exchange of
messages may be carried out asynchronously (sometimes referred to as "send and
pray"), or may use a rendezvous style in which the sender blocks until the message
is received. Message-passing concurrency tends to be far easier to reason about
than shared-memory concurrency, and is typically considered a more robust,
although slower, form of concurrent programming. A wide variety of
mathematical theories for understanding and analyzing message-passing systems
are available, including the Actor model [4]. In computer science, the Actor model
is a mathematical model of concurrent computation that treats "actors" as the
universal primitives of concurrent digital computation: in response to a message
that it receives, an actor can make local decisions, create more actors, send more
messages, and determine how to respond to the next message received.

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 371

2.3 Advantages

Increased application throughput - the number of tasks done in certain time period
will increase. High responsiveness for input/output - input/output intensive
applications mostly wait for input or output operations to complete. Concurrent
programming allows the time that would be spent waiting to be used for another
task. More appropriate program structure - some problems and problem domains
are well-suited to representation as concurrent tasks or processes.

3 Embedded Systems and Concurrent Programming

The architecture of modern embedded systems is based on multi-core or multi
processor setups. This makes concurrent computing an important problem in case
of these systems as well. The existing algorithms and solutions for concurrency
were not designed for embedded systems with resource constraints. In case of
real-time embedded systems it is necessary to meet time and resource constraints.
It is important to create algorithms which prioritize these requirements. It’s
important to take human factor into consideration and simplify the development of
concurrent applications as much as possible and help the transition from the
sequential world to the parallel world. It’s also important to have the possibility to
trace and verify the created concurrent applications. The traditional methods used
for parallel programming are not suitable for embedded systems because of the
possibility of dead-locks. Dead – locks pose a serious problem for embedded
systems [5], it can cause huge losses. The methods show in section II (actor model
and STM), which don’t have dead-locks, have increased memory and processing
requirements, also achieving real-time execution becomes harder due to the use of
garbage collection. Using these methods and taking into account the requirements
of embedded systems we can create a method which is easier to use then low level
threading and the resource requirements are negligible.

In the development of concurrent software the primary affecting factor is not the
method used for parallelization, but the possibility to parallelize the algorithms
and the software itself. To create an efficient method for parallel programming,
it’s important to ease the process of parallelizing software and algorithms. To
achieve this, the used method must force the user to a correct, concurrent approach
of developing software. This has it’s drawbacks as well, since the user has to
follow the rules set by the method. The presented method has a steep learning
curve, due to its requirements toward it’s usage (software architecture, algorithm
implementations, data structures, resource management). On the other hand, these
strict rules provide advantages to the users as well, both in correctness of the
application and the speed of development. The created applications can be
checked by verification algorithms and the integration of parts, created by other

N. Schramm et al.
Concurrent Programming Method for Embedded Systems

 372

users is provided by the method itself. The requirements of the method provide a
solid base for the users.

In case of sequential applications the development, optimization and management
is easier then in case of concurrent applications. Imperative applications when
executed have a state. This state can be viewed as the context of the application.
The results produced by imperative applications are context dependent. Imperative
applications can produce different results for the same input because of different
contexts.

Sequential applications execute one action at a given moment with a given
context. In case of concurrent applications, at a given moment, one or more
actions are executed with in one or more contexts, where the contexts may affect
each other.

Concurrent applications can be decomposed into sequential applications, which
communicate with each other through their input, but their contexts are
independent. This is the simplest and cleanest form of concurrent programming.

4 Embedded Systems and Concurrent Programming

Embedded systems are designed to execute specific tasks in a specific field. The
tasks can range from processing to peripheral control. In case of peripheral
control, concurrent execution is not as important, in most cases usage of event-
driven asynchronous execution or collective IO is a better solution [6]. In case of
data- and signal processing systems the parallelization of processing tasks and
algorithms is important. It provides a significant advantage in scaling and
increasing processing capabilities of the system. The importance of peripheral and
resource management is present in data processing systems as well. The
processing of the data and peripheral management needs to be synchronized. If we
fail to synchronize the data acquisition with data processing the processing will be
blocked until the necessary data is acquired, this means that we are not using the
available resources effectively. The idea of the presented method is to separate the
execution, data management and resource handling parts of the application. The
presented method emphisises on data processing and is made up of separate
modules. Every module has a specific task and can only communicate with one
other module. These modules are peripheral/resource management module, data
management module and the execution module. The execution module is a light
weight thread, it doesn’t have its own stack or heap. This is a requirement due to
the resource constrains of embedded systems. If required the stack or heap can be
added into the components of the execution thread with to the possibility of
extending the components of the execution thread with user defined data
structures. The main advantage of light weight threads is that they have small

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 373

resource requirements and fast task switching capabilities [7, 8]. The execution
module interacts with the data manager module, which converts raw data to a
specific data type and provides input for the execution module. The connection
between the data manager and the execution module is based on the actor model
[4], which can be optimally implemented in this case, due to the restrictions put on
the execution module which can only read and create new data (types) and cannot
modify it. The execution module can be monolithic or modular. The modular
composition is required for complex threads were processing is coupled with
actions (IO). The execution threads can be built up from two kinds of components,
processing and execution/action components.

Figure 1
Shows the steps of execution for a given thread

The component used in the execution module is type which for a given input type
’a’ creates a given type ’b’. This operation will always give the same result for the
same input. The processing component is referentially transparent, meaning it
does not support destructive actions [9]. The type variables ’a’ and ’b’ can have
the same types. The action component is similar to the processing component, it is
usable in case were we need to support destructive actions. These components
request the execution of specific actions which are received and executed by a
transactional unit. The design of the transactional mechanism is based on
transactions, just as in software transactional memory [1, 2, 3]. The threads in the
execution module are not connected to each other. It is possible to achieve
interaction between the threads. One or more execution threads can be joined with
the use of the reduce component. The reduce component iterates through the
values of the given threads, merging them into on component or value. The
merging algorithm is specified by the user, as well as the order of the merging.
The joining of the threads follows the MapReduce model, where the map
functions correspond to the threads and the reduce function corresponds to the
merging algorithm provided by the user [10]. The method introduced in this paper
is usable for concurrent programming in real-time embedded systems as well. The
complexities of the algorithms used in the method are linear in the worst case. The
priority of threads can be specified, this mean that the order of execution can be
predetermined. It is possible to calculate the amount of time required to execute a
specific action. This way the created systems can be deterministic.

N. Schramm et al.
Concurrent Programming Method for Embedded Systems

 374

Figure 2
Execution of a thread

Threads can be separated into two parts. The two parts create a client server
architecture, where the server is the data manager and the client is the
actions/steps of the thread. The job of the server (producer) is to provide the client
(consumer) with data. The server part sends the data to the client part. The server
part protects the system form possible collisions due to concurrent access or
request to resources. The client part has a simple design it is made up of
processing steps and actions.

Figure 3
Asynchronous resource manger

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 375

The job of the asynchronous resource manager (Figure 3) is to provide safe access
to resources for the server part of the threads. The resource manager does not
check the integrity of data, its only job is to provide the execution threads server
part with raw data. Parallelization of software is not trivial in most cases [11, 12].
The method presented in the paper takes this fact into consideration. It’s an
important that the parallelizable and the sequential parts of the software be easily
synchronizable. The presented view of software (as seen on Figure 4) is easily
implementable into the model of the presented method. Based on the data flow of
the software, we are able to implement it into the model of the presented method
for concurrency.

Figure 4
The data flow of a software

Conclusion

Concurrent programming is complex and hard to achieve. In most cases the
parallelization of software is not a straightforward and easy task. The realized
concurrent programs usually have safety and performance issues. For embedded
systems the existing parallelization algorithms and solutions are not optimal due to
resource requirements and safety issues.

The goal is to realize such a solution for concurrent programming, which is
optimal for embedded systems and helps and simplifies the development of
concurrent programs. The key to successful development of parallel programs is

N. Schramm et al.
Concurrent Programming Method for Embedded Systems

 376

in the realization of tools which take into consideration the human factors and
aspects of parallel development.

The model presented in this paper builds on the advantages of existing
parallelization algorithms with human factor as its primary deciding factor. In the
development of a concurrent applications, the used parallelization algorithms and
solutions are important, but the most important factor is the developer/user itself.
To achieve the best possible results, to achieve efficient software, we must
concentrate on the most important factor of development, the human (developer).

Advantages:

- Encourages parallel reasoning, abstractions and modularization of the
software

- Unified and safe model

- Asynchronous, event-driven management of peripherals.

Disadvantages:

- Forced architecture and model

- Steep learning curve for developers

- Concurrent management of peripherals is hard.

References

[1] Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice Herlihy,
Composable memory transactions, Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming,
pp. 48-60, 2005

[2] Anthony Discolo, Tim Harris, Simon Marlow, Simon Peyton Jones,
Satnam Singh, Lock -Free Data Structures using STMs in Haskell,
Functional and Logic Programming, pp. 65-80, 2006

[3] Tim Harris and Simon Peyton Jones, Transactional memory with data
invariants, ACM SIGPLAN Workshop on Transactional Computing, 2006

[4] Paul Baran, On Distributed Communications Networks, IEEE Transactions
on Communications Systems, Vol. 12, Issue 1, pp. 1-9, 1964

[5] César Sanchez, Deadlock Avoidance for Distributed Real-Time and
Embedded, Dissertation, Department of Computer Science of Stanford
University, 2007 May

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “MTIO. A multi-threaded
parallel I/O system, Parallel Processing Symposium,. Proceedings, 11th
International, pp. 368-373, 1997

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 377

[7] Girija J. Narlikar, Guy E. Blelloch, Space-efficient scheduling of nested
parallelism, ACM Transactions on Programming Languages and Systems,
pp. 138-173, 1999

[8] Girija J. Narlikar, Guy E. Blelloch, Space-efficient implementation of
nested parallelism, Proceedings of the Sixth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 1997

[9] Bondavalli, A.; Simoncini, L., Functional paradigm for designing
dependable large-scale parallel computing systems, Autonomous
Decentralized Systems, 1993. Proceedings. ISADS 93, International
Symposium on Volume, Issue, 1993, pp. 108-114

[10] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data
Processing on Large Clusters, OSDI'04: Sixth Symposium on Operating
System Design and Implementation, 2004

[11] Gene Amdahl, Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities, AFIPS Conference Proceedings, (30),
pp. 483-485, 1967

[12] Rodgers, David P., Improvements in multiprocessor system design, ACM
SIGARCH Computer Architecture News archive Volume 13, Issue 3, pp.
225-231, 1985

