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Abstract: Based on the results of [3] and [4] the current paper presents a general method 
which can be applied for any approximation type of the hodographic method to study the 
compressible fluid’s permanent and subsonic flux through profiles’ networks. Based on the 
defined mathematical model an analytical method is searched by using the linear 
approximation of the compressible fluid’s characteristic curve and the special network’s 
turbine profile. To be able to analyze on all the three hodographic methods the flux of the 
compressible fluid through the special network the method of C. C. Lin (1949) was 
generalized. The method can be used even if the elements of the special’s network are not 
turbine profiles, but the obstacles are satisfying the requirements of a geometrically and 
phisically periodic system. 
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1 Introduction 

Lot of practical engineering problems can be originated from the solution of 
boundary value problems. In most of the implied problems in engineering 
analysis, the real domain of the boundary value problems has irregular boundaries, 
with complex properties of the domain from one zone to the other, which are 
excluding any possibility to find analytical solutions for the fundamental 
equations. In this case, the modern numerical methods represent the only way to 
obtain the suitable solutions. They were used with a division of the complex 
domain by a grid, such as the method of finite elements (MFE), or by the division 
of the domain in finite elements (finite difference method, MDF), or by linearly 
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approximating the physical model and its coupled geometrical model. The 
Boundary Element Method (BEM) is an alternative new method of numerical 
study, where only the boundary of the analyzed domain is divided in finite 
elements thus obtaining fewer elements that in MFE. As a result, BEM proved to 
be very effective in economical and engineering boundary problems. The main 
point of the real-BEM [1], is the determination of the fundamental integral 
equation of the solution in a domain, with the aid of the values of the solutions on 
the boundary and of the “flux values”. By aid of this formula the integral equation 
on the boundary domain is written, and by discretization of the integral equation 
on boundary, the algebraically equation system which result in the discretized 
solution gives a boundary. The engineering applications of this method were 
discussed in [2]. 

In the present paper a practical linear approximation is presented which is capable 
to solve the compressible fluid’s flux through profiles’ network by using all three 
possibilities of the known hodographic methods (Tschiaplighin-Demtchenko 
version, Kármán-Tschien version, Caius Iacob version). The presented method 
searches an analytical solution and for this linear approximation of the physical 
model (the compressible fluid’s characteristic curve) and of the geometrical model 
(special network’s turbine profile) is applied. 

2 Presenting the Analyzed Physical and Geometrical 
Models 

The application of the profile grid theory has an important place in the design and 
improvement of the modern turbo machines turbines’. The mathematical models 
used in the profile grid modern theory consider the structure and physical 
characteristics of real fluid-course. To understand the hydrodynamics of the 
special network let us consider an axial flow surface around the turbines. In the 
domain of the turbine’s blade cylinder-type flux surfaces are created. If such a 
surface is cut by a blade and this is projected on a plane, a plane specialized 
network is obtained, containing a finite number of blade (obstacles) profiles. To 
generalize the profile grid theory, the finite numbers of blade profiles are 
substituted with infinite ones, where the elements of the blade profiles (obstacles) 
are repeated periodically. Bigger number of the turbine blades approximates better 
the real flux. 

Definition 1: A periodic coplanar system of specialized plane obstacles is defined 
as a plane specialized network. 

Definition 2: The straight line crossing the collinear point of the specialized plane 
obstacles, which creates a λ angle with the l length chord is defined as the director 
line (ax) of the specialized network (Fig. 1). 
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Definition 3: The period of the network 
)

2
( λπ

ω
−

⋅=
i

et  is the quantity that should 
be used for moving a profile on the director line in order to achieve a neighboring 
profile (t – the scale of the network). 

The plane specialized network is adjusted to the z = x + iy coordinating system of 
a complex space, where the 0x ax is parallel with the specialized plane obstacles. 
The curves delimiting the specialized plane obstacles are notated Lk ( Zk∈ ), 
while the inner area of the Lk specialized plane obstacle in the t-width periodicity 

zone is +
kD , the extern domain is −

kD . In the followings, a compressible fluid 

flux is analyzed, with 1V
G

 velocity flux at −∞  and 2V
G

 velocity flux +∞ . 

Definition 4: The principal periodical strip −
0D  is the extern domain of the 

profile with L0 base, situated in the strip whose width is t. 

 
Figure 1 

The director line of the specialized network 

Remark 1: Due to the fact that the hydrodynamic specialized network is 
physically and geometrically periodic, it is enough to know in the principal 

periodical −
0D the motion of the compressible fluid. 

Property 1: The motion around the specialized network in the z complex plane is 
the result from a source (Q, 1Γ ) placed at −∞ , pointing to another source (Q, 2Γ ) 
which is placed at +∞ . 

Of course, −−Γ−Γ=Γ …21 is the magnitude of the circulation around L0 profile. 

Remark 2: Using the kinematical and geometrical parameters, one can calculate 
the motion’s hydrodynamic parameters from the following equations [1], [11]: 

)sin( 111 αλ +=Γ tV  )sin( 222 αλ +=Γ tV  21 Γ−Γ=Γ  

)cos()cos( 222111 αλςαλς +⋅⋅=+⋅⋅= VtVtQ  (1) 
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where V1 and V2 represents the asymptotic velocity, while 1α  and 2α  the angle 
closed with these velocities and the 0x ax. 

To analyze such a complex physical and geometrical model, two methods are 
known: 

a) Integral equation method or hydrodynamic singularities method. This 
method was used to develop a calculus algorithm [2], [10], using the p-
analytical complex function theory and the boundary elements numerical 
method. 

b) Hodographic method [9]: difficult and complex calculation is applied, but 
the solution gives an analytical solution. 

3 Practical Use of the Approximating Hodograph 
Method 

In the z(x,y) complex plane of the compressible fluid consider a specialized 
network with infinite number of specialized plane obstacles (scaling parameter t, 
considered angle λ). 

We consider known the fluid’s velocity at −∞ : 111
αieVV ⋅=

G
, while at +∞  the 

velocity becomes 222
αieVV ⋅=

G
. 

The motion of the fluid inside the network is given by the following equations: 

• Continuity (Euler equation): 

div 0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
→
Vρ     or     ( ) ( ) 0=⋅

∂
∂

+⋅
∂
∂ v

y
u

x
ρρ  (2) 

• The equation of the state of the motion: 

)(ρpp =     or    const
p

=
γρ

,    
v

p

c

c
=γ  (3) 

• The equation of the irotational motion potential: 

rot 0or               0 =
∂
∂

−
∂
∂

=
→

y
u

x
vV  (4) 

where yx VvVu ==    ,  are the components of the V
G

 velocity, cp and cv are special 

temperature values at isobar (constant pressure) and izochor (constant 
temperature) conditions. 
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From (2) and (4) it can be deduced that in the occupied D region 
( ) ( )DC 2  ,  ∈∃ ψϕ  which functions are satisfying the following system of 
equation: 

y
v

x
u

xyyx ∂
∂

=
∂
∂

=
∂
∂

−=
∂
∂

∂
∂
⋅=

∂
∂ ϕϕψ

ρ
ρϕψ

ρ
ρϕ    ,   ,   , 00  (5) 

where ρ0  represents the null-velocity of D. 

Due to the fact, that (5) is not the solution of the linear partial derivative equation 
system, in the literature a lot of other linearizing solutions were published [1], [9]. 
S. A. Tschiaplighin was the first who proposed to switch the quasi-linear system 
(5) to a linear equation system, based on the independent hodographic variables 
(V,θ ): 

ivueV i −=⋅ − θ       or       u  = Vcosθ ,   v = Vsinθ  (6) 

Property 2 [1]: The relation between the physical and hodographic plane can be 
written by the following complex variable equation: 

)( 0 ψ
ρ
ρ

ϕ
θ

did
V

edz
i

+= , iyxz +=  (7) 

Property 3 [1]: The description of the compressible fluid’s motion in the (V,θ ) 
hodographic plane is given by the following equation: 

⎪
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Property 4 [9]: With the B. Demtchenko function substitution: 

∫+=
v

v
dV

V
1

0
1 ρ

ρσσ  (9) 

the equation system (8) becomes: 
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The hypothesis of S. A. Tschiaplighin was in case of the subsonic motion, by 
other words the velocity of the fluid is smaller than half of the sound velocity (V < 
c/2) then K(V) ≅ 1. Starting from this observation, the approximation of K(V) is: 

1)(
,

0
2

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

VV
V

VK
ρ
ρ

ρ
ρ

 (12) 

As a result, there exists a fictitious fluid (based on the Tschiaplighin-hypothesis) 
with the following compressible law: 

1
,

0
2

0 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

VV
V

ρ
ρ

ρ
ρ

 (13) 

This fluid gives the possibility to substitute the nonlinear characteristic equation 
(3) with the (3*) linear characteristic equation: 

'1 CCp +=
ρ

 (3*) 

where the C and C’ constants can be determined based on the used approximation 
and it reflects the real physical conditions. In this way, a hodographic 

approximation method in the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p,1

ρ
 plane substitutes the (3) isentropic curve 

with (3*). 

Property 5 [9]: Choosing the C and C’ constants of the (3*) equation three 
possibilities exist. These are named as the hodographic equation variants (Fig. 2). 

The demonstration of Property 5 was done by S. Popp in 1969 [9]. It resulted that 
only three hodographic approximation variant methods exists (Fig. 2): 

• The Tschiaplighin-Demtchenko approximation (line nr. 1); 

• Kármán-Tschien approximation (line nr. 2); 

• Caius Iacob approximation (line nr. 3). 

C. C. Lin was the first [6], who has demonstrated in 1949 that in case of a 
compressible fluid’s flux around the specialized plane obstacles, the Kármán-
Tschien approximation can be utilized. 

Property 6 [9]: Using the Tschiaplighin-type fictitious fluid, the following linear 
partial equation system can be obtained: 

ϕ
σ

ψ
θ

ψ
σ

ϕ
θ

∂
∂

−=
∂
∂

∂
∂

=
∂
∂       ,  (8*) 
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Figure 2 
The director line of the specialized network 

Remark 3: Equation (8*) reflects that the σθω i+=  complex function is an 
analytic function of the ψϕ if +=  complex variable. The σθω i+=  function is 
the Levi-Civita function of the (ζ ) fictitious plane’s incompressible fluid, who’s 
motion complex potential is: ψϕ if += . 

Theorem 1 [1]: In the hodographic approximation method, the correspondence 
between the uncompressible circulational motion from plane (ζ ) and the subsonic 
compressible motion from plane (z) is given by the following equations: 

( ) ( )∫∫ ⎟⎟
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⎜⎜
⎝

⎛
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ζζ

h
d

d
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21  (14) 

( ) ( )ζζ
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wC
w

C
V

i

i
2

1
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1 +=+=
1  (15) 

( ) ( )ζζ
ρ
ρ

h
V

Ch
V
C

wC
w

C
V

i

i
2

1
2

10
~

−=−=  (16) 

( )ζθθ harg1 +=  (17) 

where: 

• iV  is magnitude of the uncompressible fluid’s velocity; 

• 0
~ρ  is the fictitious the uncompressible fluid’s density; 

• C1 and C2 constants – in case of each approximation variants – are 
determined by the following expressions: 
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o Tschiaplighin – Demtchenko approximation variant: 

⎟
⎠
⎞⎜
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⎛ +−−=⎟
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⎛ ++=
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01 11
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1      ,11
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V
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where 
0

0 C
M V ∞=  is the Tschiaplighin-number. 

o Kármán-Tschien approximation variant: 
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where 
∞

∞
∞ =

C
M V  is the Mach-number. 

o C. Iacob approximation variant: 
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⎥
⎥
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4 J. Leray Transposition and Practical Application 

To have a bijective transposition between the (z) and (ζ ) planes (to close the 
specialized plane obstacles, with scaling parameter t and considered angle λ) the 
relations of Theorem 1 will be changed to be valid in case of circulational motion 
too. In this way, the (z) compressible plane circulational motion will be equal with 
an uncompressible, fictitious circulational motion in plane (ζ ) (by using the (14), 
(15), (16), (17) equations). This is known as the J. Leroy transposition: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ζζ
ζ

d
df

h
w 1  (21) 
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For the (ζ ) plane’s canonical region the uncompressible fluid’s flux domain will 
be chosen around a unit radius circle. In other words, the principal periodical 

strip’s ( −
0D ) domain conform projection will be the flux of 1=ζ  unit radius 

circle. 

For univocal transposition it is laid down that the principal periodical strip ( −
0D ) 

is equal with the 1=ζ  unit radius circle: 

Property 7 [11]: From the Kutta-Zsukovszki hypothesis validation, the R radius 
circle Г circulation is given by the following equation: 

( )
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⎣

⎡
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θ

θ R
RRR

RRRtV
 (22) 

Property 8 [11]: The complex potential of the flux around the uncompressible 
1=ζ  unit radius circle is given by the following equation: 
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−
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=
ζ

ζ
πζ

ζ

πζ
ζ

π
ζ  (23) 

where Q and Г physical parameters are given by equation (1). 

Remark 4: In equations (22) and (23) the value of R is determined empirical from 
a table (according to λ considered angle and t/l density – [11], pp. 113, table 1). 

Theorem 2 [5]: The shift (slip) of the corresponding blade profile contours of the 
(z) and (ζ ) planes according to relation (14) is given by the following equation: 

12 ωωτ −= ,  
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Property 9 [5]: The J. Leray )(ζh  function is determined using the hypothesis of 
closing the blade profiles: 

012 =−= ωωτ  (25) 

Theorem 3 [5]: In case of networks with straight discs (as the result of F. Weinig 
[8]), the J. Leroy-type )(ζh  function has the following expression: 
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where 

• S is the point on the stagnation point’s radius, defined by θ0 at a 0.0125-
0.15 distance from the circle; 

• T is the interior point of the basic circle 1=ζ , defined by the relation: 

( ) [ ]4
1

2
2

2
1

2
121 )(1 i

i
i VCCRheVCC +−=+ α  (27) 

Remark 5: Based on the results presented above a corresponding algorithm for 
practical application was developed by the authors [3]. 

It can be confirmed easily that using the method developed in the current paper, 
the C. C. Lin method [6], can be obtained (if the C1 and C2 constants are replaced 
with the relations of the Kármán-Tschien variant). 

Conclusions 

The paper presents a generalization of the C. C. Lin variant [6]. In this way, it is 
capable for given values of the C1 and C2 constants to analyze the compressible 
fluid’s flux through profiles’ network by using all three possibilities of the known 
hodographic methods. If the C1 and C2 constants are determined by the Kármán-
Tschien approximation variant, then the C. C. Lin method is obtained. 

The mathematical modeling method can be used in practice even if the network 
elements are not blade profiles, but the elements are physically and geometrically 
fulfilling the hypothesis of a periodic system. 

Acknowledgement 

This work was supported in part by Hungarian National Scientific Research 
Foundation, Grants No. OTKA T69055. 

References 

[1] C. Iacob: Introduction mathématique à la mécanique des fluides, Ed. Acad. 
R.P.R., Gauthier Villars, Bucharesti-Paris, 1959 

[2] A. Kovács: Boundary Element Method for Analyzing Fluids Movements in 
Network Profiles, Proc. of 8th Int. Symposium of Hungarian Researches on 
Computational Intelligence and Informatics, Budapest, Hungary, Nov. 15-
17, 2007, pp. 139-150 



Magyar Kutatók 9. Nemzetközi Szimpóziuma 
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 431 

[3] A. Kovács and L. Kovács: Rechnungsalgorytmus der hodographyschen 
Annäherungsmethode, die in dem Aerodynamik der Profilgittern verwendet 
ist, Proc. 9th Symposium of Mathematics and its Applications, 
"Politehnica" University of Timişoara, Romania, November 1-4, 2001, pp. 
274-279 

[4] A. Kovács and L. Kovács: Hodographysche Annäherungsmethode in 
Studium der Bewegung um die Profilgittern, PAMM’s Annal Central 
Meeting in Balatonalmádi, Hungary, BAM 1840 (XCVI-A), 1-4 June 2001, 
pp. 15-26 

[5] A. Kovács: Über das Bestimmen der Korespondenzfunktion vom Typ J. 
Leray im Falle der Netzprofile, Lucr. Sem. de Mat.-Fiz., I.P.T.V. 
Timişoara, 1987, pp. 54-58 

[6] C. C. Lin.: Sur les mouvements lents des fluides compresibles of aerfoils, 
Journal of Mathematics and Physics, vol. XXVIII, nr. 2, 1949, p. 117 

[7] G. I. U. Stepanov: Postroenie reschetki s rospredelenii skorosti zadannim 
po okrujnosti krugov (in Russian), P.M.M. 17, Nr. 6, 1953, p. 727 

[8] F. Weinig: Die Strömung um die Schaufeln von Turbomaschinen, Leipzig, 
J. A. Barth, 1935. 

[9] S. Popp: Lectures on gas dynamics (in Romanian), Univ. Bucharest, 
Romania, 1979 

[10] A. Kovács and L. Kovács: Rechnungsalgorithmus der Potentialintegral-
gleichung der kompressiblen Fluidgeschwindigkeit durch Profilgitter. In N. 
Boja, editor, Proceedings of the 10th Symposium of Mathematics and its 
Applications, Timisoara, Romania, November 6-9, 2003, pp. 427-434 

[11] Gh. Zidaru: Mişcări potenţiale şi hidrodinamica reţelelor de profile (in 
Romanian), Ed. DPB Bucharest, Romania, 1981 


