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1 Introduction 

Genetic algorithms as methods of global optimization often applied in the design 
of fuzzy logic controllers e.g. for tuning of fuzzy membership functions. As the 
main drawback is the great time demand numerous modifications of organic-type 
algorithms attempt to speed up the optimization process [1]. On the other hand, 
appreciating by the reported papers the Lamarckian-type algorithms are not in use 
for engineering applications. 

The task chosen in the individual project work subject of the electrical engineering 
study is to find out whether Lamarckian-type algorithms are suitable for 
optimization of fuzzy membership functions, may they be real alternatives or not. 

The final aim is to implement a physical model of a small DC machine driven 
fuzzy controlled balancing system with optimized fuzzy controller. 

In this paper the results of the first step is presented. 

2 The Implementation of Genetic Algorithm 

We proposed a fast working C++ code for testing, which algorithm is better for 
optimize our system. We choose this object oriented programming language, 
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because the running code is much more faster then other cases. We created our 
own header file, which made possible to simplify our source code.The basic idea 
was, that we may deduce the efficiency of the optimisation of the fuzzy control 
system from a particular step number of a plainer optimisation task. If we can 
appreciate the running time of the fitness function, which depends on the running 
time of the controlled system, then we can appreciate the optimisation 's time also. 
That is because calculating the fitness function is the slowest step of the algorithm. 
The appreciated time of fuzzy controlled system 's optimisation can be calculated 
as Tfuzzy = (Numbers of steps)*(Runnig time of Fitness Function) 

3 Simple Generational Genetic Algorithm 

Genetic algorithms are implemented as computer simulations in which a 
population of abstract representations of candidate solutions (called individuals, 
creatures, or phenotypes) to an optimization problem evolves toward better 
solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, 
but other encodings are also possible. In presented case every solution is 
represented as an array of bits, in form matrices mn× , where n is the number of 
individuals, and m is the length of the strings. Each row of the matrix is a solution 
of the task. 

3.1 Main Steps of Basic Generational Genetic Algorithm: 

1 Initialization of start population 

2 Selection 

3 Reproduction (Crossover, and mutation) 

4 Repeat from the second step 

3.1.1 Initialization of Start Population 

Traditionally, the population is generated randomly, covering the entire range of 
possible solutions (the search space). In our algorithm stings are generated sting 
bit by bit randomly. Then a number with continuous uniform distribution between 
0 and 1 generated. If this number was greater then 0,5 then the current bit of the 
string (called chromosome) set to 1, else to 0. This method repeated for every 
chromosome of the string. 

))(()( nrandomarraynarray arrayoldnew =   (1) 
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3.1.2 Selection 

During each successive generation, a proportion of the existing population is 
selected to breed a new generation. Individual solutions are selected through a 
fitness-based process, where fitter solutions measured by a fitness function are 
typically more likely to be selected. The roulette-wheel selection algorithm was 
used, which implemented as follows: 

1 The fitness function is applied for each individual, providing fitness 
values, which are normalized. Normalization means dividing the fitness 
value of each individual by the sum of fitness values, so that the sum of 
fitness values of whole population equals 1. In that way we get an array 
of relative fitness values of individuals. 

2 Another array created, where the elements of array were integer numbers 
generated randomly between one and the population size, representing 
the ordinal number of different solutions. The generation of random 
number was modified by the relative fitness values. 

3 The last step of the algorithm was creating the array of selected solutions. 
The n-th element of the new array was equal to k-th element of the 
original array of solutions, where k was the value of the n-th element of 
the randomly generated array. 

Generating Random Number According to Relative Fitness 

In C++ such as many other programming language there is an easy way to 
generate continuous uniform distribution on the interval [0,1]. The uniform 
distribution describes a variable where the probability of occurrence of any value 
in range defined by the minimum and maximum values is equal. First we need to 
initialize the random number generator, traditionally the starting point is set 
according to the computer system time. Then a random number is generated 
between zero and one. 

Using the step function this random number applied to calculate another number, 
which distribution depends on the relative fitness values. The step function consist 
of finitely many pieces and provides piecewise constant values. The number of 
intervals is equal to the number of individuals. Take an example of two 
individuals. The relative fitness value of the first is 0,25, and the relative fitness 
value of the second is 0,75. In this case number 2 (the order number of second 
individual) is three times higher then number 1 (the order number of first 
individual). The appropriate step function according to [2] is shown in Fig. 1: 
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Figure 1 
The step function from the example 

Figure 2 
Step function according to (3) 

If x is a uniform distribution random number on the interval [0,1] this step 
function provides 1 or 2, with the distribution we wanted. This function can be 
defined as the sums of step functions with offset. In this example: 
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Generally we can create arbitrary distribution using sum of step functions. The 
flowchart of the previous calculations can be seen in Fig. 3. 

In the calculations double precision floating point numbers are needed, because of 
the division in definition of x. This algorithm is the reason,what makes important 
to normalize the relative fitness values. In case the sum of relative fitness values 
don't equals one,then the delay value wouldn't work on interval [0;1]. 

Values of the calculations form an array, which define the new (selected) 
population. The number of individuals in the new population is equal to the 
original number. 
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Figure 3 

Generating random number according to relative fitness 

3.1.3 Reproduction 

The next step is to generate a second generation population of solutions from 
those selected through genetic operators: crossover (also called recombination), 
and/or mutation. For each new solution a pair of "parents" is selected for breeding 
from the pool of previous solutions. By producing a "child" solution using the 
above methods of crossover and mutation, a new solution is created which 
typically shares many of the characteristics of its "parents". These processes 
ultimately result in the new generation population of chromosomes that is 
different from the initial generation. Generally the average fitness will have 
increased by this procedure for the population, since only the best individuals 
from the first generation are selected for breeding, along with a small proportion 
of less fit solutions, for reasons already mentioned above. 

A, Crossover 

In genetic algorithms, crossover is an operator used to modify one or more 
chromosome from one generation to the next. It is analogous to reproduction and 
biological crossover, upon which genetic algorithms are based. In this project both 
one-point, and two-point crossovers were tested, and the two-point method gave 
better results: The good solutions were more stables and the computing was faster. 
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Two-point crossover was implemented by repeating one-point crossover for each 
pairs of solution. Variable named number_of_crossover equals two, and 
new_population is a two dimensional array which represents all individuals In 
C++ the two-point crossover can be implemented as follows: 

 
Figure 4 

Flowchart of two-point crossover 

B, Mutation 

In usual genetic algorithms mutation is a operator used to maintain genetic 
diversity from one generation of a population of chromosomes to the next. It is 
analogous to biological mutation. The implementation of the mutation operator 
involves generating a random variable rm (called mutation rate) for each bit in 
array. This random variable tells whether or not a particular bit will be modified. 
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In the evaluated method the mutation is different. First we generate a random 
number (q1) of the bit in the array, which would be change. Another random 
number (q2) from interval [0,1] is compared to rm. Only if q2 > rm will the 
mutation performed applying a XOR function on the bit in question. The 
flowchart of that is the following: 

 
Figure 5 

The flowchart of mutation 

3.1.4 About the Lamarckian Idea 

Lamarckian Gentic Algorithm is a genetic algorithm that employs Lamarckian 
inheritance, rather than Darwinian [2] – [6]. Jean-Baptiste Pierre Antoine de 
Monet, Chevalier de Lamarck (1744-1829) was a French soldier, naturalist, 
academic and an early proponent of the idea that evolution occurred and 
proceeded in accordance with natural laws. “Lamarck stressed two main themes in 
his biological work. The first was that the environment gives rise to changes in 
animals. He cited examples of blindness in moles, the presence of teeth in 
mammals and the absence of teeth in birds as evidence of this principle. The 
second principle was that life was structured in an orderly manner and that many 
different parts of all bodies make it possible for the organic movements of 
animals.” [7] 
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3.1.4.1 Implementation of Lamarckian Evolution 

In our implementation of this idea there are two differences according to simple 
genetic algorithm. We eliminated crossovers from reproduction, and we used 
another mutation algorithm. In new mutation method a bit of the sequence , which 
represents a solution changes only if the new solution is better, then the original, 
and the mutation rate is higher. 

3.1.5 Number of Iteration 

The generational process is repeated until a termination condition has been 
reached. Common terminating conditions are: 

• a solution is found that satisfies minimum criteria 

• a given number of generations reached 

• allocated budget (computation time/money) reached 

• the highest ranking solution's fitness is reaching or has reached a plateau 
such that successive iterations no longer produce better results 

• manual inspection 

• combinations of the terms above. 

In our implementations we used the second method, and repeated generating new 
populations until, we reached a fix number (iteration number). We set this number 
to 10000. 

4 Testing Algorithms 

For testing the algorithms we chosen a non-linear function for calculating fitness 
values. We searched the maximums of these functions. Function we used is the 
following: 

1
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Figure 6 

The non-linear funciton 

5 Test Results 

Both the simple and the Lamarckian algorithms used 32 individuals of 14 bit. 

 
Figure 7 

Sum of fitness values calculated, with Simple Genetic Algorithm during fifty iterations 
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Figure 8 
Sum of fitness values calculated, with Lamarckian Genetic Algorithm during fifty iterations. 

 

 
Figure 9 

Sum of fitness values calculated, with Simple Genetic Algorithm during thousand iterations 
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Figure 10 

Sum of fitness values calculated, with Lamarckian Genetic Algorithm during thousand iterations 

Conclusion 

As seen in Figures seven to ten the step number of Lamarckian algorithm is less 
then the step number of simple genetic algorithm. Although this variant needs to 
calculate fitness values twice. For final appreciation further investigations needed. 

Further Steps 

The next step is design of the appropriate fuzzy controller, and adequate coding of 
membership functions and fuzzy sets. 
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