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Abstract: Errors-in-variables models are statistical models in which not only dependent
(output) but also independent (input) variables are observed with error, i.e. they exhibit
a symmetrical model structure in terms of errors. The application field for these models
is diverse including speech and audio processing, signal processing, system identification,
econometrics and time series analysis. Without explicit information on the ratio of input and
output noise, however, it is in general not possible to identify a dynamic errors-in-variables
system, i.e. to derive unique model parameter estimates. In this paper, we explore separation
techniques that partition observations into characteristically different sets. Comparing model
parameter estimates over the separated sets, it is possible to infer noise parameter estimates,
resolving the unidentifiability issue.

1 Introduction
Errors-in-variables (EIV) models are statistical models in which not only depen-
dent but also independent variables are observed with an error, i.e. they exhibit a
symmetric model structure in terms of errors. As an example, consider the case in
Figure 1 where a set of data has to be approximated with a linear model. A con-
ventional least-squares solution to the problem (left) minimizes the error along the
y-axis only, or in other words, the error is attributed to the y-component quantity
only. In contrast, an errors-in-variables approach (right) is symmetric in the sense
that data is treated to be observed with errors along both the x and y dimensions.
Notice that the ratio of input and output noise variances (or graphically, the angle
enclosed by the dotted lines and the vertical) is assumed to be known.

The application field for errors-in-variables models is diverse including com-
puter vision, image reconstruction, speech and audio processing, signal processing,
modal and spectral analysis, system identification, econometrics, time series analy-
sis and astronomy [6]. They are motivated in several situations where the focus is on
discovering, understanding or parameterizing the internal relationship between ob-
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Figure 1: A conventional least-squares and an errors-in-variables approach to esti-
mating a static linear parametric model.

served quantities. In these situations, an errors-in-variables approach usually yields
more accurate models than conventional output-error only approaches. Errors-in-
variables systems can be static (as the case in Figure 1) or dynamic.

For dynamic errors-in-variables systems, observations are not independent but
there are couplings between observed quantities. Such a system is depicted in Fig-
ure 2, where a series of input data is fed to a process, yielding some output data.
Supposing the system is linear, the process is described by a transfer function

G(q−1) =
B(q−1)
A(q−1)

or by the equivalent autoregressive moving average (ARMA) linear difference equa-
tion

A(q−1)y0(t) = B(q−1)u0(t). (1)

where q−1 denotes the backward shift operator such that q−1u(t) = u(t− 1) and

A(q−1) = 1 + a1q
−1 + · · ·+ amaq

−ma

B(q−1) = b1q
−1 + · · ·+ bmbq

−mb.

Notice that only the noise-corrupted data sequences u(t) and y(t) are observ-
able, the noise-free data sequences u0(t) and y0(t) are not. As far as the additive
noise sequences ũ(t) and ỹ(t) are concerned, a fairly reasonable assumption is to
treat them as white Gaussian noise with variances σ2

u and σ2
y , respectively, which

corresponds to noise due to measurement error. All samples are assumed to be
equidistant in time. Although extensions to multi-input multi-output (MIMO) sys-
tems are possible, here we restrict ourselves to single-input single-output (SISO)
systems. Without loss of generality, we may assume that m = ma = mb, replacing
absent parameters with zeros, which allows us to use a symmetric model in terms
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G(q) = B(q−1)
A(q−1)

u0(t) y0(t)

ũ(t) ỹ(t)u(t) y(t)
ΣΣ

Figure 2: The basic setup for a discrete-time dynamic errors-in-variables system.

of model parameters. Given this system model, our goal is to derive model (or
process) parameters ai and bi as well as noise parameters σ2

u and σ2
y using noise-

contaminated observations u(t) and y(t), or in other words, identify a parametric
system. The identification is performed using a parameter estimator.

There is extensive literature on the identification of parametric systems, see [8]
for a comprehensive survey. Methods aiming at simultaneously deriving process
and noise parameters include instrumental variables [9], bias-compensating least
squares [13], the Frisch scheme [3, 5], structured total least squares [7], higher-order
statistics [10], frequency-domain, prediction error and efficient maximum likelihood
methods [12], which differ in the noise and experimental conditions they assume,
the computational complexity they demand as well as the statistical accuracy they
provide.

The fundamental problem in errors-in-variables identification is the deficiency
in the knowledge of the noise variance ratio. In other words, the noise “direction”
ρ that determines the extent to which observations are rather input or output noise
laden is not available, that is, the angle at which the dotted lines in Figure 1 have
to be constructed is unknown. The approach we chart in this paper is based on a
preliminary separation step prior to estimating model and noise parameters. After
an initial partitioning phase, separated sets are individually subject to parameter es-
timation, and the estimates are compared using a distance metric. Minimizing the
distance metric over an assumed noise “direction” (or equivalently, a ratio of noise
parameters), it is possible to arrive at a noise “direction” estimate. Once this infor-
mation is at our disposal, the problem reverts to a classical identification problem,
which can be tackled with conventional methods.

The key idea behind the aforementioned approach is that observations have a
“hidden knowledge” of the true noise structure. The aim of the separation step
is to partition the set of observations so that they are as far as possible from the
perspective of the noise structure, i.e. they react differently to various assumptions of
noise structure. Consequently, when the noise “direction” ρ is varied and parameter
estimates are derived for each value of ρ, they are likely to differ substantially when
an incorrect “direction” has been assumed. On the other hand, if the assumption for
ρ matches the true value, the two sets of observations are likely to behave similarly
when subject to parameter estimation.
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2 Setup and notations
Given the system description (1), we may introduce the model parameter vector θ as
well as its autoregressive and moving average components, θa and θb, respectively:

θ = [ a1 . . . ama −b1 . . . −bmb ]>

θa = [ a1 . . . ama ]>

θb = [ b1 . . . bmb ]>

whose estimates are denoted by θ̂ and whose true values by θ0. In general, the
notation ·̂ and ·0 will also be applied to other parameters to indicate the estimated
and the true value, respectively.

Similarly, the regressor vector ϕ(t) may be introduced as

ϕ(t) = [ ϕ>y (t) ϕ>u (t) ]>

ϕy(t) = [ y(t− 1) . . . y(t−ma) ]>

ϕu(t) = [ u(t− 1) . . . u(t−mb) ]>

so that the system description in (1) can be reformulated in the compact linear re-
gression form

y(t) = ϕ>(t)θ + ε(t) (2)

where ε is a stochastic disturbance term ε(t) = ỹ(t) − ϕ̃>(t)θ0 in which ϕ̃ is the
noise contribution of the regressor vector.

In order to emphasize the symmetric nature of the errors-in-variables approach,
it is preferable to exploit the symmetry of EIV models and use an implicit formula
rather than the explicit formula in (2). For this end, supplement the model parame-
ters in θ with additional elements such that

g =
[
a0 a1 . . . am −b0 −b1 . . . −bm

]>
and write

x>(t) g = 0 (3)

where

x(t) = [ x>y (t) x>u (t) ]>

xy(t) = [ y(t) . . . y(t−m) ]>

xu(t) = [ u(t) . . . u(t−m) ]>

for t = 0, . . . , N −m where the implicit assumptions a0 = 1, b0 = 0 have been
made to make (3) conform to (2).

In many cases, it is more practical to use matrix notation by collecting multiple
observations into a large vector or matrix. Notations such as u or y refer to these
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N -row vectors, while Φ and X collect N −m+ 1 and N −m observations of ϕ(t)
and x(t), respectively.

u = [ u1 u2 . . . uN ]>

y = [ y1 y2 . . . yN ]>

Φ =


ym . . . y1 um . . . u1

ym+1 . . . y2 um+1 . . . u2

...
...

...
...

yN . . . yN−m+1 uN . . . uN−m+1



X =


ym+1 . . . y1 um+1 . . . u1

ym+2 . . . y2 um+2 . . . u2

...
...

...
...

yN . . . yN−m uN . . . uN−m


In addition, it is possible to define matrices with a greater number of past observa-
tions. Accordingly, matrices such as Φq or Xq may be introduced that take q − 1 or
q instead of m or m+ 1 columns per input or output.

With matrix notation, (2) can be concisely written as an overdetermined system
of equations (dropping the first few rows of y such that the dimensions match)

y = Φθ + ε.

As far as noise assumptions are concerned, the covariance matrix of white input–
output measurement noise is parameterizable with two scalars: µ corresponding to
noise magnitude, and ρ to noise “direction”, such that

C =
[
σ2
y 0

0 σ2
u

]
= µCρ = µ

[
sin2 ρ 0

0 cos2 ρ

]
. (4)

Likewise, observations can be characterized with their sample covariance matrices.
Define the sample covariance matrices and vectors Rϕ and rϕy , as well as their
estimates R̂ϕ and r̂ϕy , in a way that

Rϕ = E
(
ϕ(t)ϕ>(t)

)
rϕy = E (ϕ(t)y(t))

R̂ϕ =
1
N

N∑
t=1

ϕ(t)ϕ>(t) =
1
N

Φ>Φ

r̂ϕy =
1
N

N∑
t=1

ϕ(t)y(t) =
1
N

Φ>y

where R̂ϕ and r̂ϕy are estimates for Rϕ and rϕy from N samples. A similar co-
variance matrix R may be introduced for the observation vector x(t), given in the
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implicit form (3), which incorporates the covariance matrix for both ϕ(t) and y(t).
Similarly, the respective correlation matrices φ may also be defined such that for
each entry (i, j) of φ

φij =
Rij√
RiiRjj

.

3 Estimation with preliminary separation
The idea of applying a preliminary separation step to partition observation has been
used in [7] for static systems with some limited extensions to dynamic systems. In
the static case, a k-means clustering algorithm is employed to split observations into
disjoint groups. An input-to-output noise variance ratio is assumed, and parameter
estimates are derived using the total least squares approach [1] for each ratio. Next,
the estimates are compared using some distance metrics. Whenever these metrics
measure minimum, they conclude that the “true” noise ratio has been found.

In contrast, for the dynamic case they apply the structured version of total least
squares, which does exploit the sequential arrangement of observations and hence
does not permit a clustering algorithm. Consequently, the authors have assumed
that data is split into two contiguous blocks of observations, which, they admit, is
very restrictive in practice. In fact, such identification approach can be discussed in
a repeated experiments framework, in which model and noise properties remain the
same throughout the experiments.

The approach presented here does not make such assumptions and can oper-
ate on non-contiguous blocks of observations. The estimation procedure takes the
following steps:

1. A noise structure is assumed. As estimator methods often automatically com-
pute noise magnitude given a noise covariance structure, it is sufficient to pa-
rameterize a covariance matrix C in (4) corresponding to white noise with a
single scalar ρ that represents noise “direction”.

2. Using the noise-polluted observations y(t) and u(t), a possibly extended
observation matrix Xq is constructed, where q is a parameter of the user’s
choice, usually with q � m.

3. A transformation is applied on Xq . The goal of the transformation is to em-
phasize the characteristics based on which the separation is performed.

4. Rows of Xq , each of which represents an observation at time t, are grouped
into two sets by means of a separation algorithm.

5. The set estimator derives parameter estimates for each of the sets indepen-
dently by a loss function given the chosen noise model.

6. Parameter estimates for the two sets are compared using some distance met-
rics.
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As the value of ρ is within the range [0; π2 ] (0 corresponding to input noise, π2 to
output noise only), minimizing the distance metrics yields the “true” value for ρ̂.
Once an estimate for ρ is at our disposal, we may apply an efficient maximum
likelihood estimator [12] to compute “true” model parameters estimates θ̂ as well as
the noise magnitude µ̂, and hence σ̂y and σ̂u.

Notice the underlying assumption that separation should produce sets with suf-
ficiently different characteristics. Otherwise, estimates may be close to each other
even if the noise structure is not appropriate, yielding a false value for noise vari-
ances and, in turn, model parameter values. It is therefore of paramount importance
to select a proper separation algorithm, which we discuss in a later section.

3.1 The generalized Koopmans–Levin estimator
Our approach uses the generalized Koopmans–Levin algorithm [11] to compute
model parameter estimates given a noise structure. This method minimizes the loss
function

J =
1
2
tr
(
(G>q CqGq)

−1G>q DqGq
)
. (5)

where

Gq =
[

Gaq
−Gbq

]
in which Gaq and Gbq are banded Toeplitz matrices of parameters ai and bi such that
(X0)qGq = 0:

Ga
q =



1 0 0 . . . 0 0
a1 1 0 . . . 0 0
a2 a1 1 . . . 0 0
...

...
...

. . .
...

...
am am−1 am−2 . . . 0 0
0 am am−1 . . . 0 0
0 0 am . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . am am−1

0 0 0 . . . 0 am


q,q−m

and Gbq can be constructed in a similar manner. Notice that the construction is
analogous to (3). The covariance matrix Cq is constructed as Cq = (µCρ) ⊗ Iq
and Dq = X>q Xq . The parameter q in (5) is of the user’s choice such that q �
m+ 1, with higher values (to a limit) yielding more accurate results at the expense
of computational cost. The special choices q = m+1 yields the original Koopmans–
Levin algorithm, while q = N produces the maximum likelihood estimator, hence
q can be seen as a scaling parameter. In simulation examples, we choose q such that
15 5 q 5 60.
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Notice that Cq in (5) is a known parameter up to multiplication by a scalar be-
cause we have already committed ourselves to a given noise structure before invok-
ing the estimation algorithm. In contrast, Gq wraps the unknown model parameters,
so that only iterative procedures can be sought in order to minimize J . We employ
the Fletcher version [4] of the Levenberg-Maquardt search algorithm to minimize J
in (5).

While we have selected the generalized Koopmans–Levin estimator, it is equally
possible to use other types of estimators that need a noise structure model and can
tackle a discontiguous separation of observations.

3.2 Observation separation techniques
The goal of data separation is to devise an unsupervised analysis to partition ob-
servations into disjoint sets such that points belonging to the same set are similar,
while those belonging to different sets are dissimilar. This can be formalized by
introducing a set indicator so that

S1 = {i | f(xq(i)) = 0}
S2 = {i | f(xq(i)) < 0}

where xq(i) denotes the ith row of Xq and f, : Rq → R, i = 1 . . . N such that
S1 ∩ S2 = ∅.

The most natural way to assess the performance of the function f is to compare
the covariance matrices R1 and R2 the separated observations it brings forth would
produce. The aim is to produce characteristically different elements in the lower (or
equivalently, upper) triangle ofR1 andR2 calculated by taking the observations that
belong to each of the two respective sets. This can be numerically measured using
matrix divergences. Let φ1 and φ2 denote the correlation matrices of the respective
sets. The Itakura–Saito matrix divergence is computed as

dφ1 = trace(φ1φ
−1
2 )− log(det(φ1φ

−1
2 ))− n

where n is the order of the correlation matrix φ, whereas the von Neumann matrix
divergence is calculated as

dφ1 = trace(φ1 log φ1 − φ1 log φ2 − φ1 + φ2)

where logX is the principal matrix logarithm of X . The index emphasizes that
these divergences are not symmetric, in order to make them independent of the
substitution order of φ1 and φ2, we may use d = max(dφ1 , dφ2). However, it is
clear that maximizing d is a cumbersome endeavor even with a greedy algorithm.
Consequently, computationally simpler alternatives have to be considered. One idea
is to transform the original observation matrix Xq using a transformation T and do
the separation over TXq .

Principal component analysis (PCA) is a widely used statistical method for di-
mension reduction. The basis for dimension reduction is that PCA picks up the
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dimensions with the largest variances. The idea of PCA-based separation is to com-
pute the singular value decomposition (SVD), which is the basis for PCA, and inspect
one or more of the principal singular vectors. More specifically, decompose the data
matrix D̄ such that

D̄ = ŪΣV̄ >

and denote the columns of Ū as ūi so that the first principal vector is ū1. A set
indicator may then be introduced so that

S1 =
{
i | f(ūpi

(i), . . . , ūpf
(i)) = 0

}
S2 =

{
i | f(ūpi(i), . . . , ūpf

(i)) < 0
}

where f : Rpf−pi → R, i = 1 . . . N and pf − pi determines how many principal
components to take into consideration. Choices to f include:

• u1(i) = 0 which is essentially equivalent to performing a k-means clustering
on the data with k = 2 (see [2]).

•
∏pf

k=pi
ūk(i) = 0. If corresponding elements in the covariance matrices have

opposite signs, it is likely that the estimation algorithm produces similar es-
timates for the two sets only in case of correct noise assumption. A natural
combination is to choose pi = 1 and pf = 2.

• |̄u1|(i) > m1 wherem1 is the median of the values in the first principal vector
ū1.

• ||ūpi...pf
|| > m, which is a generalization of the above, where ūpi...pf

stands
for the indexed principal components and m is the median value of the norm.
For a 2-dimensional case with pi = 1 and pf = 2, this corresponds to a circle
in the ū1 vs. ū2 plane where observations are grouped whether they fall inside
or outside the circle.

What remains to discuss is the exact matrix to use in place of the data matrix D̄ that
is subject to decomposition. The following are viable alternatives:

• the extended observation matrix Xq; or

• the components ofXq that correspond to input observations, which we denote
by Uq .

Notice that the observation matrix Xq consists of both input and output observa-
tions, each of which is contaminated with noise with a different variance σ2

u and
σ2
y , respectively. Consequently, it is better to replace the Euclidean distance with

the Mahalanobis distance that takes the different scalings into account by incorpo-
rating the noise matrix C̄ = Cq in (5) into separation mechanisms. In accordance,
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the generalized version of singular value decomposition (GSVD) has to be employed
instead of SVD such that

D̄ = ŪΣ1X̄
>

C̄ = V̄ Σ2X̄
>

I = Σ>1 Σ1 + Σ>2 Σ2

where Ū and V̄ are unitary matrices and I is the unit matrix.
Obviously, principal components analysis is not the only alternative in trans-

forming the observation matrix Xq . In particular, applying a discrete (possibly
short-time) Fourier-transform to the observation vector y or u and performing the
separation in (partially) frequency rather than (purely) time domain is a viable al-
ternative. In this scenario, the separated sets will not be disjoint in time domain
even though each set will contain only selected frequency components. A simple
(though not very effective) frequency domain separation is to split the spectrum into
low-frequency and high-frequency components.

3.3 Comparing parameter estimates
There are various ways parameter estimates over the separated sets can be compared.
The most straightforward is to use the relative distance

d =
||θ̂1 − θ̂2||
||θ̂1|| ||θ̂2||

where θ̂k represents the estimated parameter vector on set k. It is, however, often
more practical to compare only autoregressive (AR) components θ̂ak of the model, i.e.
parameters ai, which often produces more accurate results, especially for sequences
with low moving average excitation. Accordingly,

d =
||θ̂a1 − θ̂a2 ||
||θ̂a1 || ||θ̂a2 ||

. (6)

As a third option, the angle enclosed by the estimated parameter vectors may be
compared, such that

d = ∠(θ1, θ2).

where ∠ denotes the angle enclosed by the model parameter vectors.
These metrics do not take noise magnitude into account. The combined distance

metrics
d =

(
(µ1 − µ2)2 + c sin2 (∠(θ1, θ2))

)
proposed in [7] can be leveraged for a possibly more accurate noise direction esti-
mate where c is a scaling constant, often chosen as c = 1.
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Figure 3: Minimizing the relative parameter distance metric over a noise “direc-
tion” measure. The separation was performed using a greedy maximization of
the Itakura–Saito matrix divergence (continuous) and principal component analy-
sis (dashed).

4 Simulation results
Consider the discrete linear model described by the relationship

y0(t) =
B(q−1)
A(q−1)

u0(t) = 0.05
2q−1 + q−2

1− 1.5q−1 + 0.7q−2
u0(t) (7)

and letN = 2048, ρ = 40◦, µ = 0.1. The input sequence sampled from a composite
sinusoidal signal and the amplifier coefficient 0.05 have been chosen to produce a
signal-to-noise (SNR) ratio of approximately 10dB where SNR is measured by

SNR[dB] = 10 log10

1
N

∑N
i=1 u

2
0

1
N

∑N
i=1(u− u0)2

As far as the parameters of the identification algorithm are concerned, let q = 16 in
the GKL algorithm, use the Itakura–Saito matrix divergence and principal compo-
nent analysis (the latter with set indicator ū1(i)ū2(i) = 0) in separating the entire
observation matrix Xq and measure the distance between the model parameter esti-
mates using the relative distance (6) based on autoregressive components only. The
Itakura–Saito divergence was maximized using a greedy algorithm. First, both sets
were initialized with the entire set of observations after which observations were al-
ternatingly omitted from either set such that the divergence would increase. Figure 3
shows that the distance between model parameter estimates is indeed minimized at
the true value of the noise parameter as a noise “direction” measure is varied in the
range [0; π2 ].
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5 Conclusions
We have investigated an approach to identifying linear dynamic errors-in-variables
systems with a preliminary separation step. We have seen that the aim of the sep-
aration step is to produce two distinct sets which are distant from each other in a
certain sense. In other words, when parameter estimates are derived for each of the
two sets, they are likely to be close to one another only if an initial noise assumption
was correct. In fact, assuming an incorrect noise covariance structure leads to easily
identifiable groups of observations, whereas a correct assumption makes no such
distinction of observations possible. As a result, traversing a noise space, the “true”
noise model can be discovered by minimizing the distance between parameter esti-
mates over the two sets. Future work is focused on identifying efficient separation
mechanisms both in time and frequency domain, or alternatively, based on other
transformed versions of the original observation matrix.
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