
Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 501

Building Motion and Noise Detector Networks
from Mobile Phones

Péter Ekler, Dr. Hassan Charaf
Budapest University of Technology and Economics
Magyar tudósok krt. 2, H-1111 Budapest, Hungary
peter.ekler@aut.bme.hu, hassan.charaf@aut.bme.hu

Abstract: As the capabilities of mobile phones are increasing, developers are able to create
more complex applications on them. Nowadays, mobile phones support several networking
technologies which allowes to create cooperative networks from them; this way mobile
phones can work together in order to reach a common goal. We have created an
application, called MobSensor, which basically turns the mobile phone into a motion and
noise detector. MobSensor has also networking functions and it allowes to connect multiple
mobile phones to each other. With the help of our solution we can create a cooperative
sensor network from mobile devices running MobSensor. The paper discusses the
architecture, the algorithms and the performance of MobSensor and it also examines its
requirements.

Keywords: mobile phones, sensor network, motion detector, noise detector

1 Introduction
The hardware and software capabilities of mobile phones are increasing rapidly.
They have high processing power and they can use relatively large amount of
memory, thus they are able to run even complex applications with multiple
threads. In this paper we would like to examine wheather a mobile phone is able to
behave as a motion and noise detector and if it is possible then are we able to
create a sensor network from mobile phones. To answer these questions first we
have investigated which mobile platforms allow to implement such functions,
after it we have implemented our solution, called MobSensor and we have
examined its behavior in real environment.

Nowadays, we can realize the evolution of opearting systems for mobile phones.
One of the oldest operating system for smartphones is the Symbian OS [1].
Symbian OS is an operating system aimed at wireless devices to provide enhanced
usability and features on mobile devices. Symbian is also an independent company
which started in 1998 partly owned by Ericsson, Nokia, Motorola and Psion. It
was not until two years later the first symbian phone, the Ericsson R380 handset

P. Ekler et al.
Building Motion and Noise Detector Networks from Mobile Phones

 502

went on sale to the general public. Nowadays the Symbian OS is becomming more
and more powerful, it supports all kind of hardwares and even touch screen. In
2001 the first GPRS Symbian Handset phone was released called the Nokia 7650.

Besides Symbian OS other mobile platforms are also developing like the
Windows Mobile [2], where the goal is to create a platform for mobile phones
which is easy to use and similar to the popular Windows operation system on
personal computers. However if we look around in the market we can realize that
new mobile platforms have also borned. One of the newest is the Android [3]
which is developed by Google. Basically the Android platform is a software stack
for mobile devices, which includes an operating system, a middleware and also
key applications. The applications on the Android platform are written in the
popular Java language. On Android platform developers have full access to the
same framework APIs used by the core applications which is one of the key
advantage of the platform. The application architecture is designed to simplify the
reuse of components; any application can publish its capabilities and any other
application may then make use of those capabilities.

There are several platforms for mobile phones which makes the application
developement harder, because it is always hard to decide which platform do we
want to support. If the goal is to support different type of devices we can choose
the Java ME platform [4] which enables to run the same application on different
type of mobile phones with the help of a Java Virtual Machine (JVM)
implementation. However developing applications on Java ME has some
disadvandages like the capabilities of the JVM are limited and it does not allow to
reach the low-level functions of the operating system. Another disadvantage is that
the performance of these applications is lower because of the overhead of the
JVM. Still the Java ME is the best solution if we want create an application, which
is able to run on different type of mobile phones. In order to investigate wheather
mobile phones are able to run a motion and noise detector application we have
choosed the Java ME platform because we considered the platform independency
as an important issue.

We can see that the software platforms of mobile phones are becomming more
and more powerful and the hardware components of these devices are also
developing well. The devices support different type of network connections like
Bluetooth and even the WLAN technology. The mobile devices contains also
several hardwares related to multimedia functions like camera, microphone, large
display, stereo sound speakers, etc.

In order to implement a motion and noise detector we can use the built-in camera
and microphone of the device and basically we have to implement an algorithm
which compares the images and sound samples to detect differences. However it is
not trivial to implement such algorithms on mobile phones, because of their
limited resources compared to a personal computer.

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 503

The rest of the paper is organized as follows. Section 2 describes related work in
the area of mobile phone programming and cooperative networks. Section 3
describes our application, called MobSensor, which basically turns the mobile
phone into a network capable motion and noise detector. Section 4 highlights the
requirements of MobSensor from the Java ME point of view. Section 5 proposes
the architecture of our solution and it describes the motion and noise detecting
algorithms. Finally Section 6 discusses about the performance and the user
interface of MobSensor.

2 Related Work
Today wireless communication between mobile devices are increasingly
becoming more and more important. Cognition, a continuous process involving
sensing, reasoning, understanding and reacting, can be applied to wireless
networks in order to adapt the system to the highly dynamic wireless ecosystem.
The ultimate goals are to enhance the efficiency in the use of radio resources as
well as to improve both link and network performance. Fitzek et al [5] present a
detailed overview of a rapidly emerging topic in modern communications:
cognitive wireless networks.

In [6] the authors collected examples about solutions for mobile phones based on
cooperation. Each chapter contains examples and source code to rapidly make
developers familiar with the most important concepts. Examples cover peer to
peer networks, cooperative networking, cross layer protocol design, key
challenges such as power consumption.

In a previous paper [7] we have examinded the cooperation between mainstream
mobile phones by creating a BitTorrent client. In this peer-to-peer protocol the
cooperatin between peers is extreamly important and the results were encouring;
we managed to connect with mobile phones to the existing peer-to-peer
community and participate as a full peer.

The key difference between this paper and the previous researches is that our goal
is to create a sensor network from mobile phones by utilizing the special “sensors”
of the device like camera and microphone.

3 MobSensor Functions
The main idea behind creating MobSensor application was that mobile phones are
basically small computers with different types of multimedia capabilities and
network handling technologies. MobSensor is able to sense its environment; it
listens for changes via a motion and noise detector and it fires an alert if it detects
anything.

P. Ekler et al.
Building Motion and Noise Detector Networks from Mobile Phones

 504

The motion detector unit uses the camera of the phone and detects differences in
the environment. If the difference measure calculated by the comparison algorithm
is higher than a specific value, the application alerts. The noise detector works the
same way; it uses the microphone of the mobile device and detects differences
between sound samples. In both cases users are able to set the sensibility of the
sensor algorithms to fit to the current environment.

MobSensor also has networking functionality; users are able to establish a
network of mobile devices with ad-hoc WLAN technology or with the help of a
WLAN router. In order to establish the sensor network in the current
implementation of MobSensor, one device has to become a central ‘boss’ device
that will behave as a server so that other phones can connect to it. The ‘boss’
device has a special ability: it can temporarily disable other sensors. This way, we
can walk with the ‘boss’ device in the network without triggering any alerts.
Figure 1 shows how mobile phones can establish an ad-hoc WLAN network with
MobSensor.

Figure 1

Ad-hoc WLAN network established by cooperating MobSensor applications

4 Requirements of MobSensor
The first step in implementing a motion and noise detector application on mobile
phones is to choose the target platform. For this purpose, it is necessary to
examine the capabilities of the perspective platform to decide wheather it is able
to run such an application. Since platform independency is a key issue we have
choosen the Java ME platform to support several different types of mobile phones.
Following, we describe the platform requirements that are necessary for
implementing a motion and noise detector and how Java ME can fulfil these
requirements.

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 505

The application requires moderate processing power to compare images and sound
samples in order to determine the difference between them. Besides that the
applications requires also reasonabla amount of memory to store the image and
sound samples for the comparison algorithm. Each time the application needs to
store two images or sound samples in the memory in order to calculate a
difference number between the two samples. If this number is higher than a
specific one, then a motion or noise is detected and the application can alert.

From the Java ME point of view we have to clarify which Java ME versions and
optional packages do we need. Java ME is based on three main elements:
configurations, profiles and optional packages.

1 Configurations [8] describe the capabilities of the virtual machine and provide
the basic set of libraries for a broad range of devices. The configuration
targeting resource-constraint devices like mobile phones is called Connected
Limited Device Configuration (CLDC). MobSensor requires the CLDC 1.1
configuration, because it allows applications to use more memory than the 1.0
version, which only allows 160-512 kB of memory. However this requirement
does not mean a big limitation since CLDC 1.1 is supported by almost all type
of mobile phones nowadays.

2 For defining a higher-level API the Java ME platform specifies profiles on top
of the different configurations. The combination of Mobile Information Device
Profile (MIDP) [9] with CLDC is widely used to provide a complete Java
application environment for mobile phones and similar devices. MobSensor
requires MIDP 2.0, since it supports different type of networking protocols like
TCP/IP which we need to establish an ad-hoc sensor network from multiple
mobile phones which are running MobSensor. MIDP 2.0 is also supported by
almost all of the mobile phones which are not older than 3 or 4 years.

3 If we want to use other technology specific APIs in our application, we can
import different kinds of optional packages which can be found in different
JSRs [10] (Java Specification Request). MobSensor requires JSR 135 (Mobile
Multimedia API) in order to reach the microphone and the camera of the
phone.

To sum up from the MobSensor point of view, the Java environment on the device
has to support CLDC 1.1, MIDP 2.0 and JSR 135. We can check on the
manufacturers website wheather the selected phone supports these versions but
nowadays they are common in mainstream mobile phones.

After we managed to choose the target platform and the necessary package
versions two questions still remain. Will the mobile phones be able to constantly
read the images from the camera and calculate a difference between two image in
order to detect motions? Can these detectors work together in a network? Of
course the same questions are valid in the case of noise detector. Following we
describe our solution and we discuss about its performance.

P. Ekler et al.
Building Motion and Noise Detector Networks from Mobile Phones

 506

5 MobSensor Engine

5.1 High Level Architecture of MobSensor
The application is built-up from four main units (Figure 2), each of which is
responsible for a different functionality. The Motion and Noise Detector units
implement the sensor functions, the User Interface unit is responsible for showing
the most important information on the phone screen and the Network Manager
implements the networking functions.

Figure 2

High level architecture of MobSensor

In this paper we do not discuss the networking function in more details since it
does not contain any difficulties.

5.2 Motion and Noise Detecting Algorithm
The motion detector algorithm is based on continuous image recording and
comparison. Figure 3 illustrates the algorithm on a flow diagram. We have not
shown any exit points on the diagram, because user can stop the motion detector at
any time.

The flow diagram of the noise detecting algoirthm is the same, thus we do not
show it on a separate figure.

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 507

Figure 3

Flow diagram of the motion detector

MobSensor uses JSR 135 [11] for capturing images and recording sounds. The
core of the motion detector is basically the following thread:

class MotionDetecting extends Thread {
 public void run() {
 byte[] imageBinary; // image from the camera
 Image image;
 int diffValue;

 // while motiondetecting is enabled
 while (motionDetecting_Enabled) {
 try {
 //--- reading the snapshot
 imageBinary = null;
 try {
 imageBinary = videoControl.
 getSnapshot("encoding=jpeg");
 // resize image if needed
 }
 catch (MediaException ex) {
 // handle exception

P. Ekler et al.
Building Motion and Noise Detector Networks from Mobile Phones

 508

 }
 //--- comparing images
 if (imageBinary!=null) {
 // create image from the binary data
 image = Image.createImage(
 imageBinary, 0, imageBinary.length);
 // if there was no previous image
 if (previousImage == null) {
 previousImage = image;
 }
 //else compare images
 else {
 diffValue = pixelDifference_BetweenImages(
 previousImage,image,sensibility);
 if (!alert_disabled &&
 diffValue>diff_limit) {
 // make some noise
 alert();
 previousImage = null;
 }
 else {
 previousImage = image;
 }
 }
 imageBinary = null;
 System.gc();
 }
 } catch (Throwable t) {
 // handle exception
 }

 try {
 sleep(100);
 } catch (InterruptedException ex) {
 // handle exception
 }
 }
 }
}

The loop in the thread reads an image into the imageBinary byte array. After
this, an Image object is created from the byte array, which will be compared to
the previous image. If there is no previous image then we store this new Image
object and start the whole loop again. Otherwise the comparison algorithm
calculates a difference value (diffValue) from the current and the previous
image with a specific sensitivity parameter (set by the user). If this value is higher
than a specific number then the sensor alerts.

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 509

The algorithm that calculates the difference value from the images is implemented
in the following two functions:

public static int pixelDifferencesBetweenImages(
 Image a, Image b, int aSensibility) {
 int[] aImagePixels = getPixels(a);
 int[] bImagePixels = getPixels(b);
 int pixelDifference = 0;

 for (int i=0; i<aImagePixels.length; i++) {
 if (getDifferenceFromARGB(
 aImagePixels[i],bImagePixels[i])>
 aSensibility) {
 pixelDifference ++;}
 }
 return pixelDifference;
}

public static int getDifferenceFromARGB(int firstPixel,
 int secoundPixel) {
 int red1 = (firstPixel >> 16) & 0xff;
 int green1 = (firstPixel >> 8) & 0xff;
 int blue1 = firstPixel & 0xff;

 int red2 = (secoundPixel >> 16) & 0xff;
 int green2 = (secoundPixel >> 8) & 0xff;
 int blue2 = secoundPixel & 0xff;

 int result = 0;

 result+=Math.abs(red1-red2);
 result+=Math.abs(green1-green2);
 result+=Math.abs(blue1-blue2);

 return result;
}

This current initial implementation is rather simple as it checks every pixel of the
image and calculates a pixelDifference value based on the color of the
pixels. Note that this comparison algorithm has a weak point: if we put the sensor
in a dark room and we just turn on the light it will also alert. To avoid this false
alert we have to extend the algorithm with an extra condition: if the color change
for all pixels is rather large then the motion detector should not alert.

The noise detector works the same way as the motion detector (we will not discuss
it in more details): it basically records half second long sound pieces and
compares their power.

P. Ekler et al.
Building Motion and Noise Detector Networks from Mobile Phones

 510

6 MobSensor Application
After the implementation of MobSensor we have tested it on several devices and
the performance was reasonably good. Following we discuss about the
performance of MobSensor, after we introduce the user interface of the
implemented solution.

6.1 Performance of MobSensor
The required time for comparing an image to the previous one (Tperformance)
depends from three main components (1).

compareresizereadeperformanc TTTT ++= (1)

Tread means how long does it take to read an image from the camera. Tresize is the
required time for resizing the image if it is needed, because comparing large
images can take too much time. Tcompare means how long does it take to determine
the difference between the two image. In the algorithm we can set weather we
want to resize the images or not. We can realize that if we do not resize the image
then Tresize is 0, but the value of Tcompare will increase, because the resolution of the
images is higher.

In general, the performance of the motion detector depends on the camera type
and the JVM implementation of the device, because if the device has for example
a five megapixel camera and the JVM does not allow to read images from the
camera with low resolution than the image processing and image comparison can
take much time. In order to decrease this processing time we can resize the images
but it has also overhead (Tresize) as we have mentioned above. For example on
Nokia N91 devices the process of comparing an image to the previous one without
resizing the images took half secound, which is enough for detecting motions. On
other devices the performance was also reasonable but sometimes the JVM
implementation of the device does not allow to read low resolution images from
the camera and resizing the images manually (Tresize) can take much time.

The performance of the noise detector is almost the same but it does not depend
on the device, since the data readed from the microphone has always the same
characteristics. If we want to apply the (1) equation to the noise detector, then the
value of Tresize is always 0.

6.2 User Interface of MobSensor
If we start the application, on the main screen we can see the most important
information about its state. We can reach the main functions from the menu like
starting the motion and noise detector, viewing the settings and reaching the
networking functions. Figure 4 illustrates the user interface of the application.

Magyar Kutatók 9. Nemzetközi Szimpóziuma
9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 511

After we started the ‘boss’ mode from the menu, the main screen shows what the
network address of the boss is and how many phones have already connected to
our sensor network.

Figure 4

User interface of MobSensor

On the settings view, we can set the sensibility of the sensors and the difference
values above which the detectors should alert. The last screenshot represents the
motion detector when somebody is moving in front of the device. On the top of
the screen we can see the difference number which comes from the previously
described comparison algorithm.

Conclusions

In this paper we were investigating the possibility of using mobile phones as
motion and noise detectors and to create a sensor network from mobile devices
running this application. Nowadays the capabilities of mobile phones are
increasing rapidly, which allowes to implement more resource intensive
applications on them. Besides that mobile phones support several networking
technologies which allowes them to share their resources between each other in
order to reach a common goal.

We have implemented an application, called MobSensor, to analyze the behavior
of mobile phones as motion and noise detectors. MobSensor is able to sense its
environment and detect any kind of motions and noises. The motion and noise
detection is based on continous image and sound sample comparison. We have
analyzed the performance of MobSensor ans our experiments shows that it is
reasonalby good.

Future plan will be to increase the performance of the application and to allow to
create short-range sensor networks from MobSensor capable phones via Bluetooth
connections. We also plan to extend MobSensor functions by allowing to upload
those images to a website which caused the alert. This way we can see from a web
browser what caused the alert and these images can be used for further analysis as
well.

P. Ekler et al.
Building Motion and Noise Detector Networks from Mobile Phones

 512

References

[1] History of the Symbian OS, Sept. 22, 2008 [Online], Available:
http://www.symbiano.com/history-symbian.php

[2] Windows Mobile, Sept. 22, 2008 [Online], Available:
http://www.microsoft.com/windowsmobile/en-us/default.mspx

[3] Android platform for mobile phones, Sept. 22, 2008 [Online], Available:
http://code.google.com/android/

[4] Java ME platform, Sept. 23, 2008 [Online], Available:
http://java.sun.com/javame/index.jsp

[5] H. P. Fitzek, M. D. Katz, “Cognitive Wireless Networks”, ISBN: 978-1-
4020-5978-0. Springer, 2007

[6] H. P. Fitzek, F. Reichert, “Mobile Phone Programming”, ISBN: 978-1-
4020-5968-1, Springer, 2007

[7] P. Ekler, J. K. Nurminen, A. J. Kiss “Experiences of Implementing
BitTorrent on Java ME platform”, CCNC’08. 1st IEEE International Peer-
to-Peer for Handheld Devices Workshop 2008, Las Vegas, USA, to be
published

[8] Connected Limited Device Configuration, Sept. 23, 2008 [Online],
http://java.sun.com/products/cldc

[9] Mobile Information Device Profile 2 description, Sept. 24, 2008 [Online],
Available: http://developers.sun.com/mobility/midp/articles/midp2network

[10] Java Specification Request overview, Sept. 24, 2008 [Online], Available:
http://www.jcp.org/en/jsr/overview

[11] Java Specification Request 135, Sept. 24, 2008 [Online], Available:
http://jcp.org/en/jsr/detail?id=135

