
Some Extensions of Migrativity for Triangular Norms

János Fodor and Imre J. Rudas

John von Neumann Faculty of Informatics
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Abstract: In this paper we introduce and describe continuous triangular norms that are mi-
grative with respect to another fixed t-normT0, in particular to the three prototypesTM,
TP andTL. Depending on characteristic properties ofT0, classes of nilpotent and strict mi-
grative t-norms are naturally formed. In these cases the characterization and construction is
carried out by solving functional equations for the generators. In the third case an ordinal-
sum-like construction is resulted.
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1 Introduction

In [3] the authors introduced the new term –α-migrative – for a class of binary
operations as follows.

Definition 1. Let α be in ]0, 1[. A binary operationT : [0, 1]2 → [0, 1] is said to be
α-migrativeif we have

T (αx, y) = T (x, αy) for all x, y ∈ [0, 1]. (1)

One can easily see that the following functionTβ : [0, 1]2 → [0, 1] isα-migrative
(whereβ ∈ [0, 1]):

Tβ(x, y) =

{

min(x, y) if max(x, y) = 1,
βxy otherwise.

(2)

In fact, thus defined functionTβ is a triangular norm for anyβ ∈ [0, 1].
A triangular norm(t-norm for short)T : [0, 1]2 → [0, 1] is an associative, com-

mutative, non-decreasing function such thatT (1, x) = x for all x ∈ [0, 1]. Proto-
types of t-norms are the minimumTM(x, y) = min(x, y), the productTP(x, y) =
xy, and the Łukasiewicz t-normTL(x, y) = max(x + y − 1, 0). Obviously, the
product t-normTP is α-migrative for anyα ∈ ]0, 1[.

As it is well-known, each continuous Archimedean t-normT can be represented
by means of a continuous additive generator (see e.g. [6]), i.e., a strictly decreasing
continuous functiont : [0, 1] → [0,∞] with t(1) = 0 such that

T (x, y) = t(−1)(t(x) + t(y)), (3)



wheret(−1) : [0,∞] → [0, 1] is the pseudo-inverse oft, and is given by

t(−1)(u) = t−1(min(u, t(0))).

A triangular subnorm(t-subnorm for short)T : [0, 1]2 → [0, 1] is an associative,
commutative, non-decreasing function such thatT (x, y) ≤ min(x, y) for all x, y ∈

[0, 1]. Obviously, any t-norm is a t-subnorm. Notice that the function T ′

β(x, y) =
βxy for all x, y ∈] is a t-subnorm that is alsoα-migrative for anyα ∈ ]0, 1[.

Consider a t-normT : [0, 1]2 → [0, 1]. ThenT satisfies the associativity func-
tional equation (4), which is well-known in several theoretical and applied fields,
and is formulated as follows (x, y, z ∈ [0, 1]):

T (T (x, y), z) = T (x, T (y, z)). (4)

If we fix the value ofx, sayx = α, then equation (4) remains valid forT . Let
us choose one particular t-normT0, and consider the following functional equation
(x, y ∈ [0, 1]):

T (T0(α, x), y) = T (x, T0(α, y)). (5)

Then, obviously,T0 itself is a solution. The question is natural: is there any
solutionT of (5) that differs fromT0? If so, determine and characterize all solutions.

The generalized associativity equationhas also been studied and solved, see
[1,7]. It can be written as follows:

F (G(x, y), z) = H(x,K(y, z)). (6)

In this general framework the particular form ofH = F ,K = G in (6) corresponds
to (5).

WhenT0 = TP, one can recognizeα-migrativity (1) as a particular case of (5).
The next definition extends the migrative property as follows.

Definition 2. Let α be in ]0, 1[ andT0 a fixed triangular norm. A binary operation
T : [0, 1]2 → [0, 1] is said to beα-migrative with respect toT0 (shortly: (α, T0)-
migrative) if we have (5) for allx, y ∈ [0, 1].

Notice that if a t-normT is (α, T0)-migrative then we have

T (α, y) = T0(α, y) for all y ∈ [0, 1]. (7)

This follows from (5) by substitutingx = 1.
In the present paper we study three particular cases of(α, T0)-migrative t-norms

according to the three prototypes. That is, whenT0 = TM, whenT0 = TP, and
whenT0 = TL. Notice that the second case was investigated in [4], where all the
details and proofs can also be found. The other cases will be published in our forth-
coming paper [5].



2 (α, TM)-migrative Continuous Triangular Norms

In the present case the(α, TM)-migrative property is read as follows:

T (min(α, x), y) = T (x,min(α, y)) for all x, y ∈ [0, 1]. (8)

Now (7) implies thatT (α, y) = min(α, y) for all y ∈ [0, 1].
The description of all(α, TM)-migrative continuous triangular norms is given

in the following theorem. For the proof see [5].

Theorem 1. A continuous t-normT is (α, TM)-migrative if and only if there exist
two continuous t-normsT1 andT2 such thatT can be written in the following form:

T (x, y) =



























αT1

(x

α
,
y

α

)

if x, y ∈ [0, α],

α+ (1 − α)T2

(

x− α

1 − α
,
y − α

1 − α

)

if x, y ∈ [α, 1],

min(x, y) otherwise.

3 (α, TP)-migrative Continuous Triangular Norms

The(α, TP)-migrative property now is read as follows:

T (αx, y) = T (x, αy) for all x, y ∈ [0, 1], (9)

This is the originalα-migrativity, and (7) implies thatT (α, y) = αy for all y ∈

[0, 1].
We have shown that the migrative property is rather strong for a continuous t-

norm: it implies that the t-norm cannot have idempotent elements, and cannot be
nilpotent.

Theorem 2. LetT be a continuous t-norm. IfT is α-migrative thenT is strict.

It is easy to conclude (see [3]) that a strict t-normT with additive generatort is
α-migrative if and only if

t(αx) − t(x) = t(αy) − t(y) for all x, y ∈ [0, 1]. (10)

Equation (10) says that the differencet(αx) − t(x) is independent ofx. More
exactly, if we chosey = 1 in (10), this independent difference can be obtained as
t(αx) − t(x) = t(α). We write it as follows:

t(αx) = t(α) + t(x) for all x ∈ [0, 1]. (11)

In the next theorem we provide the general solution of the functional equation
(11). It is based on the important fact that the restriction of t to the interval[α, 1]
uniquely determinest on each subinterval[αk+1, αk], progressing from left to right.



Theorem 3. Supposet is an additive generator of a strict t-norm. Thent satisfies the
functional equation (11) if and only if there exists a continuous, strictly decreasing
functiont0 from [α, 1] to the non-negative reals witht0(0) < +∞ and t0(1) = 0
such that

t(x) = k · t0(α) + t0

( x

αk

)

if x ∈]αk+1, αk], (12)

wherek is any non-negative integer.

Unfortunately,none of the famous t-norm families (like Frank, Hamacher, Dombi,
Alsina) are migrative, except the particular case oft(x) = − log x, or equivalently,
T (x, y) = TP(x, y) = xy.

This results is illustrated in the next figure withα =
3

4
, t0(x) = 4 − 4x for

x ∈

[

3

4
, 1

]

. Thent

(

(

3

4

)k
)

= k, andt is linear in between.
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Figure 1
Additive generator of a3/4-migrative t-norm

For further results for instance on the construction of smooth additive generators
and proofs we refer to [4].

4 (α, TL)-migrative Continuous Triangular Norms

In the present case the(α, TL)-migrative property is read as follows:

T (max(α+ x− 1, 0), y) = T (x,max(α+ y − 1, 0)) for all x, y ∈ [0, 1]. (13)

Now (7) implies thatT (α, y) = max(α+ y − 1, 0) for all y ∈ [0, 1].
The description of all(α, TL)-migrative continuous triangular norms is given

now. For proofs and more details see [5].

Lemma 1. Assume thatT is a continuous t-norm that is(α, TL)-migrative. Then
there exists an automorphismϕ of the unit interval such thatT = Tϕ

L
. That is, we

have

T (x, y) = Tϕ
L

(x, y) = ϕ−1(max(ϕ(x)+ϕ(y)−1, 0)) for all x, y ∈ [0, 1]. (14)



Taking into account the functional form ofT given in (14), the equation (12)
defining(α, TL)-migrativity has the following form:

ϕ−1(max[ϕ(max(α+ x− 1, 0)) + ϕ(y) − 1, 0]) =

= ϕ−1(max[ϕ(x) + ϕ(max(α+ y − 1, 0)) − 1, 0]).

If we applyϕ to both sides of this equality we get the following equivalent form
of (14) (x, y ∈ [0, 1]):

max[ϕ(max(α+ x− 1, 0)) + ϕ(y) − 1, 0] =

= max[ϕ(x) + ϕ(max(α+ y − 1, 0)) − 1, 0]. (15)

This equation implies that

ϕ(max(α+ x− 1, 0)) + ϕ(y) > 1 ⇐⇒ ϕ(x) + ϕ(max(α+ y − 1, 0)) > 1.

In particular, it is absolutely necessary for having these strict inequalities thatα +
x > 1 andα+ y > 1. In this case we can write

α+ x− 1 > ϕ−1(1 − ϕ(y)) ⇐⇒ α+ y − 1 > ϕ−1(1 − ϕ(x)), (16)

and for suchx, y the automorphismϕ must satisfy the following functional equa-
tion:

ϕ(α+ x− 1) + ϕ(y) = ϕ(x) + ϕ(α+ y − 1). (17)

As a consequence of (16) and (17) we get (by choosingy = 1) that

α > 1 − x ⇐⇒ α > ϕ−1(1 − ϕ(x)) (18)

and
ϕ(α + x− 1) = ϕ(α) + ϕ(x) − 1. (19)

In addition, continuity ofϕ implies also thatα = 1 − x if and only if α =
ϕ−1(1 − ϕ(x)). That is,

ϕ(α) + ϕ(1 − α) = 1. (20)

If we take into account (20) in (19) we get

ϕ(x − (1 − α)) = ϕ(x) − ϕ(1 − α). (21)

That is, if we knowϕ on the interval[1 − α, 1] then equation (21) definesϕ on
[0, α].

Theorem 4. Assume thatα < 1/2. A t-normT (x, y) = ϕ−1(max(ϕ(x) + ϕ(y) −
1, 0)) is (α, TL)-migrative if and only if there exist automorphismsψ0 andψ1 of the
unit interval and a real number0 < γ < 1/2 such that

ϕ(x) =


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γψ0

(x

α

)

if 0 ≤ x ≤ α,

(1 − 2γ)ψ1

(

x− α

1 − 2α

)

+ γ if α < x < 1 − α,

γψ0

(

x− (1 − α)

α

)

+ 1 − γ if 1 − α ≤ x ≤ 1.

. (22)



Complementary to this result, we have to consider the case whenα ≥ 1/2 –
that is, whenα ≥ 1 − α. We start from an arbitrary automorphismψ0 of the unit
interval, a numberγ ∈ ]0, 1[, and define a piece of the automorphismϕ in (15) as
follows:

ϕ(x) = γ · ψ0

(

x− α

1 − α

)

+ 1 − γ, x ∈ [α, 1]. (23)

We have thatϕ(α) = 1 − γ.
Denote byn the largest positive integerk such thatkα − (k − 1) > 0. We can

extend the definition ofϕ from [α, 1] to the intervals[2α − 1, α], . . . ,[nα − (n −

1), (n− 1)α− (n− 2)]. It can be seen that for anyk = 1, . . . , n we have

ϕ(kα− (k − 1)) = kϕ(α) − (k − 1).

To have a meaningful extension, the following inequalitiesmust hold:

n− 1

n
≤ ϕ(α) ≤

n

n+ 1

and
n− 1

n
≤ α ≤

n

n+ 1
.

Then we can defineϕ for x ∈ [kα − (k − 1), (k − 1)α − (k − 2)] as follows
(k = 1, . . . , n):

ϕ(x) = γ · ψ0

(

x+ (k − 1) − kα

1 − α

)

+ 1 − kγ, (24)

whereγ depends onψ0 andα as follows:

γ =
1

n+ 1 − ψ0

(

n− (n+ 1)α

1 − α

) .

This choice ofγ guarantees that the definition ofϕ on [nα − (n − 1), 1] is
appropriate. This makes it possible thatϕ can be defined in a meaningful way also
on the missing part[0, nα− (n− 1)] by equation (19).

All the details of handling this case can be found in [5].

5 Summary and Conclusions

In this paper we have completely described continuous t-norms that are migrative
with respect to a fixed t-norm from the prototypes. Their characterization has been
developed through solutions of a functional equation.

Although Definition 1 is seemingly general, notice that it does not provide a
meaningful notion for triangular conorms. Indeed, ifS is a t-conorm then it isα-
migrative if and only ifS(αx, y) = S(x, αy) holds for allx, y ∈ [0, 1]. If we choose
y = 0 then we must haveαx = x for all x ∈ [0, 1], becauseS is α-migrative. This
is impossible whenα 6= 1. Similarly, if y = 1 then we must haveS(x, α) = 1 for
all x ∈ [0, 1], which is again impossible unlessα = 1. Therefore, even the correct
definition ofα-migrative t-conorms needs special care.



References
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