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Abstract: In our work we have compared various fuzzy rule based learning and inference 
systems. The base of the investigations was a modular system that we have implemented in 
C language. It contains several alternative versions of the two key elements of rule based 
learning – namely, the optimization algorithm and the inference method – which can be 
found in the literature. We obtained very different properties when combining these 
alternatives (changing the modules and connecting them) in all possible ways. The 
investigations determined the values of the quality measures (complexity and accuracy) of 
the obtained alternatives both analitically and experimentally where it was possible. Based 
on these quality measures the combinations have been ordered according to different 
aspects. 
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1 Introduction 

Because of their favorable properties, the scope of intelligent technical 
applications based on soft-computing methods is continuously expanding in 
problem fields accepting sub-optimal solutions. As a result, the use of fuzzy rule 
based learning and inference systems, as intelligent system components, is also 
growing. However, both theory and application practice still contain many 
unsolved questions, hence researching the theory and applicability of such systems 
is obviously an important and actual task. As the results of the investigations on 
applicability mean some kind of labelling for the involved methods,  there are two 
outcomes of these investigations. One is the fact that they result in practical 
knowledge for industrial users covering which techniques offer better possibilities, 
which ones are worth to be selected for integration into their respective products. 
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The other one is a feedback to researchers regarding to in which direction should 
they continue their works. 

Fuzzy rule based learning and inference systems are machine learning systems, so 
they can be characterized by the following basic properties: time and space 
complexity during learning and during inference based on the rules learned, 
furthermore, the accuracy  of learning. 

Our work aims the investigation methods of such systems. The starting point of  
this investigation is a modular system that we have implemented in C language. It 
contains several alternative versions of the two key elements of rule based 
learning, namely, the optimization algorithm and the inference method, which can 
be found in the literature. We have chosen deterministic gradient techniques as 
well as stochastic soft-computing algorithms for optimization, and we have chosen 
two inference methods, one using dense and the other one using spare rule bases. 
The former method is the Mamdani-inference [2], the latter is the stabilized KH-
interpolation technique [3,4]. We obtained very different properties when 
combining these alternatives in all possible ways. The values of the above 
mentioned quality measures (complexity and accuracy) have been determined 
both analytically and experimentally where it was possible. As a result, fuzzy rule 
based learning and inference systems have been labelled and ordered according to 
different aspects. 

Actually, our work is far from being complete, because we definitely have not 
implemented and compared all optimization and inference methods that can be 
found in the literature. This paper only tries to give a concept how such 
comparative investigations can be carried out. 

The next section gives a brief overview of the algorithms and techniques used. 
After that, the structure of the modular system will be explained. The 4th section 
discusses the theoretical determination of complexity. The simulation results will 
be explained in the 5th section. Finally, we summarize our work and draw some 
conclusions. 

2 Overview of the Algorithms and Techniques Used 

In order to carry out this investigation, it is necessary to overview some  
theoretical points. Obviously, one of these is the theory of fuzzy rule based 
inference systems, and another one is machine learning. The former includes the 
basic mathematics of fuzzy systems, furthermore, the knowlegde of rule based 
inference methods, while the latter implies the familiarity to the techniques a wide 
scope of numerical optimization. 

The following subsections aim to give a brief overview of some important points 
of these theoretical aspects, which will be referred to later repeatedly in the paper. 
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2.1 Fuzzy Rule-based Inference Systems 

The structure of a fuzzy rule based inference system and the forms of fuzzy rules 
are well known from the literature. The idea was first proposed in [1] and then 
adopted in an easier computable frame in [2]. 

Mamdani-inference is so widely applied that its description will be omitted here, 
we just refer to some basic textbook on fuzzy control (e.g. [5,6]). The stabilized 
Kóczy-Hirota (in short KH-) interpolation method is based on a certain 
interpolation of a family of distances between fuzzy sets in the rules and in the 
observation [4]. Unlike the original KH-interpolation [3], it does not consider only 
the two closest surrounding rules, but it takes all the rules and computes the 
conclusion based on the consequent parts weighted by the distances. 

Unfortunately, due to the characteristic of this technique, the stabilized KH-
interpolation may result in abnormal fuzzy sets (in membership functions that do 
not represent fuzzy sets) as conclusions. 

2.2 Machine Learning 

Machine learning [7] means a process where parameters of a ‘modelling system’ 
are being adjusted so that its behavior becomes similar to the behavior of a 
‘system to model’. Since the behavior can be characterized by input-output pairs, 
the aim of the learning process can be formulated so that the modelling system 
should give similar outputs for the input as the original system does. If a function 
φ(x) denotes the system to model and f(x,p) denotes the modelling system, where 
x∈X is the input vector and p is the adjustable parameter vector, the previous 
requirement can be expressed as follows: 

),()(: pxfxXx ≈∈∀ φ  

In a supervised case the learning happens using a set of training samples (input-
output pairs). If the number of samples is m, the input in the ith sample is xi, the 
desired output is di = φ(xi) and the output of the model is yi = f(xi,p), the following 
formula can be used: 

ii ydmi ≈∈∀ :],1[  

The error (ε) shows how similar the modelling system to the system to model is. 
Let us use a widely applied definition for the error, the Sum of Square Errors 
(SSE): 
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Obviously the task is to minimize this function ε. It can be done by optimization 
algorithms. 
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2.3 Optimization 

In our case the optimum means minimum, as the error of the learning system must 
be minimized by choosing the proper parameter vector p. Hereafter the 
optimization will be discussed in this sense. 

There are several deterministic techniques as well as stochastic algorithms applied 
for the optimization. Some of them will be presented below. 

2.3.1 Gradient Methods 

The main idea of the gradient methods is to calculate the gradient of the objective 
function (in our case the error function) at the actual point and step towards lower 
values using it by modifying p. 

One of the most frequently used methods of this type is the backpropagation 
algorithm (BP) [7,8]. Each of its iterations contains the following steps: 
computing the gradient vector, multiplying it with a so-called bravery factor and 
finally, subtracting it from the actual position to obtain the new position. If the 
gradient vector function is given, the vector can be obtained by calling this 
function, otherwise by a pseudo-gradient computation. 

A more advanced and effective technique is the Levenberg-Marquardt algorithm 
(LM) [9,10]. It computes not only the gradient vector, but a vector of the Taylor 
series estimation as well. The direction of the step that will be applied is between 
these vectors. For this, a Jacobian matrix needs to be computed. Each row of the 
matrix contains the gradient vector of a residual function, where a residual 
function is the difference of the given and the desired answer in the training 
sample. If the Jacobian matrix computing function is given, the matrix can be 
obtained by calling this function, otherwise by a pseudo-Jacobian computation. 

A stopping condition can be integrated in the Levenberg-Marquardt method that 
can be checked in each iteration so that if it is fulfilled, it means that the algorithm 
cannot be continued effectively anymore, so further iterations are nearly useless. 
For the sake of latter refering, let us say that the stopping condition is active if the 
algorithm stops when it is fulfilled and inactive otherwise. 

After a proper amount of iterations, as a result of the gradient steps, the algorithms 
find the nearest local minimum quite accurately. However, these techniques are 
very sensible to the location of the starting point, because in order to find the 
global optimum, the starting point must be located close to it. 

2.3.2 Evolutionary Computation Methods 

The evolutionary computation methods, like genetic algorithm (GA) [11] or 
bacterial evolutionary algorithm (BEA) [12], imitate the abstract model of the 
evolution observed in nature. Their aim is to change the ‘individuals’ in the 
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‘population’ by the evolutionary operators to obtain better and better ones. The 
goodness of an individual can be measured by its ‘fitness’. If an individual 
represents a solution for a given problem, the algorithms try to find the optimal 
solution for the problem. Thus, in our case the individuals are potentially optimal 
parameter vectors, the fitness function is the error function and the best individual 
holds the (quasi-) optimal values for p. 

If an evolutionary algorithm uses an elitist strategy, it means that the best ever 
individual will always survive and appear in the next generation. As a result, at the 
end of the algorithm the best individual will be presented as the optimal solution. 

2.3.3 Memetic Algorithms 

Evolutionary computation techniques explore the whole error surface because of 
their characteristic, but they slowly approach to the local minima. Gradient and 
evolutionary methods may be combined [13,14], for example, if in each iteration 
for each individual a gradient procedure is applied. This combination has the 
advantage that every individual gets close to the nearest local minimum. This way 
we can unite the advantages of the gradient and the evolutionary techniques, 
namely, we find the local minima quite accurately on the whole error surface. 
Therefore we obtain the global minimum, i.e. the optimal parameter vector quite 
accurately. 

3 Structure of the System 

The system we have implemented has a modular structure. The modules compose 
hierarchical levels. The larger, logically more coherent modules will be called 
‘main modules’, while the ones contained in the main ones will be ‘sub-modules’. 
Due to the hierarchical structure, the modules are nested in each other, thus a main 
module can be the sub-module of another modul. 

The outermost layer, which is the largest main module, is a learning system frame 
that has a connection to a sample generator program. The learning system module 
contains two sub-modules that are also main modules themselves: the inference 
techniques module and the optimization algorithms one. Detailed descriptions of 
the main modules follow with aspects of module planning. 

3.1 Learning Module 

During the planning of the learning system we had to determine the way the user 
can define the system to model, furthermore the type of learning and the 
architecture of the modelling system, namely, the f(x, p) function to adjust. 
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In this approach the system to model is static. It can be represented as a function 
to be approximated. The type of learning is supervised learning. This type needs a 
training sample set and (if possible) a test sample set from the user defined 
problem. If they are not previously available, they can be generated from any 
explicit definitions by the sample generator that has been implemented as an 
auxiliary program. It samples the function of the system to model and produces 
input-output pairs. 

The modelling system is a fuzzy rule base whose rules contain trapezoidal 
membership functions. The components of parameter vector p represent the 
characteristic points (breakpoints) of the membership functions, therefore the 
learning process adjust these points by the help of the inference and optimization 
sub-modules. The number of rules, the type of the inference method and the 
intervals of the characteristic points are user defined values. 

3.2 Inference Module 

The inference (main) module contains two sub-modules. One implements 
Mamdani-inference while the other contains stabilized KH-interpolation. In both 
cases the defuzzification of the conclusions is made by Center Of Gravity (COG) 
algorithm. 

For both techniques it is necessary before the inference, to verify whether the 
membership functions of the rules really describe fuzzy sets. The reason of this 
verification is that the order of the characteristic points can be changed during the 
application of the optimization algorithms which might result in abnormal fuzzy 
sets. This verification does not affect the computational demands significantly. 

In case of stabilized KH-interpolation method the conclusion is covered by a 
convex hull before defuzzification, so that the possible abnormal conclusions 
become fuzzy sets. In not abnormal case this step has no effects, because the 
convex hull of a fuzzy set is itself. 

3.3 Optimization Module 

The optimization (main) module contains four sub-modules. These implement the 
backpropagation and the Levenberg-Marquardt method as deterministic gradient 
type, and the genetic and bacterial evolutionary algorithms as stochastic soft-
computing methods as it was explained in subsection 2.3. The only deflection 
from the mentioned descriptions are in the evolutionary algorithms, in the 
initialization of the starting population and in the mutation parts. In the 
evolutionary methods the starting populations are generated in a way that avoids 
abnormal fuzzy sets. During the mutation attention must also be paid for the same 
problem. 
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By implementing the four optimization modules we have obtained four additional 
algorithms, because both the gradient and the evolutionary techniques could be 
combined into a memetic algorithm and there are apparently four combination 
possibilities. 

Thus, the eight methods that will be investigated: backpropagation (BP), 
Levenberg-Marquardt algorithm (LM), genetic algorithm (GA), bacterial 
evolutionary algorithm (BEA), memetic algorithm with backpropagation steps 
(MEMBP), memetic algorithm with Levenberg-Marquardt steps (MEMLM), 
bacterial memetic algorithm with backpropagation steps (BMABP) and bacterial 
memetic algorithm with Levenberg-Marquardt steps (BMALM). 

4 Theoretical Determination of Complexities 

Although the error of the system cannot be determined theoriticaly, the other 
quality measures, namely both, the time and space complexities can be computed 
in some cases. Unfortunately, not in all cases though, because e.g., if we make the 
learning stop after reaching a fix error level, the number of iterations cannot be 
predicted due to the stochastic character of the methods. However, if the number 
of steps and generated rules are deterministic, because of the problem type or 
system parameters, the required complexities can be determined. These 
complexities can be easily calculated from the implemented program code. 

Let us define some parameters that will be used: 
 Ndim number of input dimensions 
 Nsample number of training samples 
 Nrule number of rules 
 Ngen number of generations 
 Nind number of individuals in the population 
 Npar number of parameters to adjust (length of an individual) 
 αsel selection rate (∈[0,1]) 
 Nclone number of clones 
 Niter number of iterations 
 Nres number of residual functions 
 Tfun evaluation time complexity of the objective function 
 Tfitness evaluation time complexity of the fitness function 
 Tres evaluation time complexity of a residual function 
 Tgrad evaluation time complexity of the gradient function 
 Tjac evaluation time complexity of the Jacobian calculating 
  function 
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4.1 Time Complexity 

In case of optimization algorithms time complexities give the necessary evaluation 
number of objective, residual, fitness, gradient and Jacobian matrix calculating 
functions. Obviously each type of optimization does not use all of these functions. 

As a matter of fact, learning is an optimization process, where the optimization 
algorithms call objective, residual and fitness functions. These functions do 
inferences, hence the time complexities of learning are determined mostly by the 
computational demands of optimizations and inferences. The rest of the 
complexities come from the gradient and the Jacobian matrix calculating 
functions. 

Time complexities of optimization algorithms, inference techniques, function 
evaluations and learning methods are presented in Tables 1, 2, 3 and 4, 
respectively. In brackets pg and pJ denote the complexities when pseudo-gradient 
and pseudo-Jacobian computations are done. Since both Mamdani-inference and 
stabilized KH-interpolation have the same complexity (see Table 2), we do not 
distinguish the learning based on different inferences in Table 4. 

Table 1 
Time complexities of optimization algorithms 

Algorithm Time complexity 
BP O(Tfun + Niter * Tgrad) 

BP(pg) O(Niter * Npar * Tfun) 
LM O(Niter * (Nres * Tres + Tjac)) 

LM(pJ) O(Niter * Nres * Npar * Tres) 
GA O(Ngen * Nind * Tfitness) 

BEA O(Ngen * Nind * Npar * Nclone * Tfitness) 
MEMBP O(Ngen * Nind * (Tfitness + αsel * Niter * Tgrad)) 

MEMBP(pg) O(Ngen * Nind * (Tfitness + αsel * Niter * Npar * Tfun)) 
MEMLM O(Ngen * Nind * (Tfitness + αsel * Niter * (Nres * Tres + Tjac))) 

MEMLM(pJ) O(Ngen * Nind * (Tfitness + αsel * Niter * Nres * Npar * Tres)) 
BMABP O(Ngen * Nind * (Npar * Nclone * Tfitness + Niter * Tgrad)) 

BMABP(pg) O(Ngen * Nind * Npar * (Nclone * Tfitness + Niter * Tfun)) 
BMALM O(Ngen * Nind * (Npar * Nclone * Tfitness + Niter * (Nres * Tres + Tjac))) 

BMALM(pJ) O(Ngen * Nind * Npar * (Nclone * Tfitness + Niter * Nres * Tres)) 
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Table 2 Table 3 
Time complexities of inference techniques Time complexities of function evaluations 

 

 

 

 

 

 

 
Table 4 

Time complexities of learning methods 

Method Time complexity 

BP O(Niter * Nsample * Nrule * Ndim) 

BP(pg) O(Niter * Nsample * Nrule
 2 * Ndim

 2) 

LM O(Niter * Nsample * Nrule * Ndim) 

LM(pJ) O(Niter * Nsample * Nrule
 2 * Ndim

 2) 

GA O(Ngen * Nind * Nsample * Nrule * Ndim) 

BEA O(Ngen * Nind * Nclone * Nsample * Nrule
 2 * Ndim

 2) 

MEMBP O(Ngen * Nind * (1 + αsel * Niter) * Nsample * Nrule * Ndim) 

MEMBP(pg) O(Ngen * Nind * (1 + αsel * Niter *  Nrule * Ndim) * Nsample * Nrule * Ndim) 

MEMLM O(Ngen * Nind * (1 + αsel * Niter) * Nsample * Nrule * Ndim) 

MEMLM(pJ) O(Ngen * Nind * (1 + αsel * Niter * Nrule * Ndim) * Nsample * Nrule * Ndim) 

BMABP O(Ngen * Nind * (Nrule * Ndim * Nclone + Niter) * Nsample * Nrule * Ndim) 

BMABP(pg) O(Ngen * Nind * (Nclone + Niter) * Nsample * Nrule
 2 * Ndim

 2) 

BMALM O(Ngen * Nind * (Nrule * Ndim * Nclone +  Niter) * Nsample * Nrule * Ndim) 

BMALM(pJ) O(Ngen * Nind * (Nclone + Niter) * Nsample * Nrule
 2 * Ndim

 2) 

4.2 Space Complexity 

In this section space complexities will be presented. Apparently, the order of 
magnitude of the complexities are determined only by the values in the 
parameters, because the other necessary memory allocations are constant. 
Therefore they are not needed to be expressed in the complexities. 

Function Time complexity 

Objective O(Nsample * Nrule * Ndim) 

Residual O(Nrule * Ndim) 

Fitness O(Nsample * Nrule * Ndim) 

Gradient O(Nsample * Nrule * Ndim) 

Jacobian O(Nsample * Nrule * Ndim) 

Technique Time complexity

Mamdani O(Nrule * Ndim) 

Stabilized KH O(Nrule * Ndim) 



K. Balázs et al. 
Comparison of Fuzzy Rule-based Learning and Inference Systems 

 70 

Space complexities of optimization algorithms, inference techniques and learning 
methods are presented in Tables 5, 6 and 7, respectively. Since both Mamdani-
inference and stabilized KH-interpolation have the same complexity (see Table 6), 
we do not distinguish the learning based on different inferences in Table 7. 

 Table 5 Table 7 
 Space complexities of optimization algorithms Space complexities of learning methods 

Algorithm Space complexity 
BP O(Npar) 
LM O(Nres * Npar) 
GA O(Nind * Npar) 

BEA O(Nind * Npar) 
MEMBP O(Nind * Npar) 
MEMLM O((Nind + Nres) * Npar) 
BMABP O(Nind * Npar) 
BMALM O((Nind + Nres) * Npar) 

Table 6 
Space complexities of inference techniques 

Technique Space complexity

Mamdani O(Nrule * Ndim) 

Stabilized KH O(Nrule * Ndim) 

5 Experimental Determination of Complexity and 
Errors 

The results of the simulations will be presented in this section. The obtained 
quantities tell about different errors (MSE, MSRE, MREP) and computational 
times of the systems. Thus, these results allow the experimental determination of 
the errors and the experimental validation of time complexities. 

The definitions of the errors: 

• Mean Square of Error (MSE): ∑
=

−
m

i
ii yd
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2)(1  

• Mean Square of Relative Error (MSRE): ∑
=

−m

i i

ii

y
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2
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• Mean Relative Error Percentage (MREP): ∑
=

−m

i i

ii

y
yd

m 1

100  

Method Space complexity 

BP O(Nrule * Ndim) 

LM O(Nsample * Nrule * Ndim) 

GA O(Nind * Nrule * Ndim) 

BEA O(Nind * Nrule * Ndim) 

MEMBP O(Nind * Nrule * Ndim) 

MEMLM O((Nind + Nsample) * Nrule * Ndim) 

BMABP O(Nind * Nrule * Ndim) 

BMALM O((Nind + Nsample) * Nrule * Ndim) 
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The results of the runs and their short explanations follow in the next subsections. 
Every simulation will not appear though, because their huge number does not 
allow it, rather only some important cases will be presented. 

In the simulations the parameters had the following values. The number of rules in 
the rule base was 4, the number of individuals in a generation as well as the 
number of clones was 10. 3 gene transfers and 6 gradient steps were carried out in 
each generation. The gradient vector and the Jacobian matrix computing functions 
were not given, hence pseudo-gradients and pseudo-Jacobians were computed 
where backpropagation or Levenberg-Marquardt gradient steps were applied. 

In case of all parameter sets 10 runs were carried out. We did not take the mean of 
the obtained values, because so few runs were done that the outlyers affected the 
actual mean value very strongly. Instead of calculating the mean, we sorted the 
elements according to their values and took the ‘median’ (the middle one) of the 
elements. These medians were presented in the figures, to get a better overview. 

Every figure has four graphs. The upper left one shows the MSE, the upper right 
one the MSRE, the lower left one the MREP error values and the lower right one 
the computational times. The broken lines denote the results given by Mamdani-
inference, the continuous one the results by stabilized KH-interpolation. 

5.1 Validation of Theoretical Complexities 

The following example presents the maximum generation number dependence of 
BMALM learning. Although this is only an example, the other theoretical 
dependences can also be validated in practise by similar simulation series. 

A one-dimensional problem was given and the stopping condition was active in 
the Levenberg-Marquardt method. During the runs the maximum numbers for 
generations were 10, 15, 20 and 25, respectively. So we could observe the 
dependence of the errors and the computational time on the maximum generation 
number (Figure 1). 

 
Figure 1 

Maximum generation number dependence 
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Due to the few simulations it is not unambiguous that the errors are decreasing, 
but the decreasing tendecy can be noticed. However, the theoretical time 
complexity, namely, the linear dependency is unambiguously validated by the 
experiments. 

5.2 Comparison of Learning Methods Based on Different 
Optimizations 

The genetic algorithms used elitist strategy and the stopping condition was 
inactive in the Levenberg-Marquardt method. 

During the runs the optimization methods were GA (1), MEMBP (2), MEMLM 
(3), BEA (4), BMABP (5) and BMALM (6), respectively. (The numbers in 
brackets are the numbers in the figures denoting the algorithms.) BP and LM were 
not used, since the use of only gradient techniques would be worthless, because 
they could improve the system only until they find the nearest local minimum on 
the error surface. By doing this series of experiments we could observe the 
dependence of the errors and the computational time on the applied optimizations. 

At first, the system learned a one-dimensional function. In case of fixed generation 
numbers (20 generations) we can notice from the results (Figure 2 (left)) that the 
optimized MSE error values were lower when Mamdani-inference and when 
bacterial algorithms were used. The best results could be obtained by BMALM 
technique. On the other hand, it can also be observed that the computational 
demands of the methods are growing in the following order: GA, MEMBP, 
MEMLM, BEA, BMABP and BMALM. 

 

Figure 2 
Comparison of learning methods based on different optimizations for a one-dimensional problem 

in case of fixed generation numbers (left) and in case of a 200 seconds time limit (right) 

When a time limit (200 seconds) was given, learning methods applying Mamdani-
inference gave better results (see Figure 2 (right)), because they had lower 
computational demands. (This time limit means that the learning stops at the end 
of the generation in which the limit has been exceeded.) 
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When the system learned a two-dimensional function with the previous fixed 
generation number (Figure 3 (left)), applying the interpolative inference gave 
lower errors. We obtained similar experiences about the optimization techniques 
like we did in the previous case. 

 
Figure 3 

Comparison of learning based on different optimizations for a two-dimensional problem 
in case of fixed generation numbers (left) and in case of a 200 seconds time limit (right) 

In case of a 200 seconds time limit, learning methods using stabilized KH-
interpolation with bacterial algorithms gave the best results as well (see Figure 3 
(right)). 

As a summary we can say, according to low computation time, learning methods 
using Mamdani-inference had better performances, however their time complexity 
is exactly the same as the time complexity of the ones using stabilized KH-
interpolation (see section 4.1) in case of the same system parameters. Although, 
for low dimensional problems the former ones gave lower errors than the latter 
ones, in higher dimensions (even in two dimensions during the simulations) the 
latter ones became better. The reason is that the number of rules was the same for 
each inference method and this became an advantage for the interpolation. 

The situation is similar when we consider simple evolutionary algorithms against 
memetic (or for larger difference, bacterial memetic) algorithms. Learning 
methods using the former ones were faster than the latter ones, but the latter ones 
had lower errors in higher dimensions. 

Conclusions 

In our work we have compared various fuzzy rule-based learning and inference 
systems. 

The starting point of the investigation was a modular system that we have 
implemented in C language. It contains several alternative versions of  the two key 
elements of rule based learning, namely, the optimization algorithm and the 
inference method, which can be found in the literature. We obtained very different 
properties when combining these alternatives (changing the modules and 
connecting them) in all possible ways. 
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The investigations determined the values of the quality measures (complexity and 
accuracy) of the obtained alternatives both analitically and experimentally where it 
was possible. 

In case of the same parameters in lower dimensions learning methods using 
Mamdani-inference had better performance in errors as well as in computational 
demands, however in higher dimensions learning methods applying stabilized KH-
interpolation took the lead. In higher dimensions bacterial optimization techniques 
had advantages against the genetic ones. 

To reinforce these tendencies, as a continuation of this work, carrying out more 
simulations is necessary. 

Similarly like it has been proposed in this paper, comparison of systems that use 
other optimization algorithms and inference techniques can be performed. 

Further research may aim to implement, integrate and compare other optimization 
algorithms and fuzzy inference methods that can be found in the literature. 
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