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Abstract: In this paper we propose an optimization approach based on the Spectral

Projected Gradient (SPG) method for solving the binary tomography reconstruction

problem. Using a convex-concave regularization we treat the reconstruction problem

as a convex and box constrained optimization problem which is suitable to solve by

SPG method. Experimental results on the limited set of test problems show that the

new method has competitive reconstruction performance in comparison with a well

known non-deterministic simulated annealing approach. In addition, its capability

to apply other regularization terms gives to this deterministic method a desirable

properties.
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1 Introduction

Tomography is imaging by sections. It deals with recovering images from a
number of projections. Since it is able to explore inside of object without
touching it at all, tomography has a various application areas, for example in
medicine, archaeology, geophysics and astrophysics. From the mathematical
point of view, the object corresponds to a function and the problem posed is to
reconstruct this function from its integrals or sums over subsets of its domain.
In general, the tomographic reconstruction problem may be continuous or
discrete. In Discrete Tomography (DT) the range of the function is a finite



set. More details about DT and its applications you can find in [7, 8]. In
addition to other, it has a wide range of application in medical imaging, for
example within Computer Tomography (CT), Positron Emission Tomography
(PET) and Electron Tomography (ET). A special case of DT, which is called
Binary Tomography (BT), deals with the problem of the reconstruction of a
binary image.

In many applications like in medical imaging, DT reconstruction problem
leads to solving a large-scale and ill-posed optimization problem. Efficiency
of this optimization has significant influence on the real applicability of the
DT method. Therefore, this issue is actual and subject of several recently
published papers, see [15, 13, 14, 16, 17]. In this paper we propose a new op-
timization approach BT image reconstruction based on the SPG optimization
method in conbination with convex-concave regularization. SPG is introduced
by Birgin, Mart́ınez and Raydan (2000) in [2] and it is further analyzed and
developed in [1, 4, 5]. The main motivation for application of SPG lies in the
fact that SPG is a very efficient method for solving large-scale and convex-
constrained problems, especially when the projection onto the feasible set is
easy to compute, see [11]. Numerous numerical tests in [2] and [3] shown the
superiority of SPG method in compare with other ones. Our problem is obvi-
ously a large-scale (regarding to the image resolution) and we reformulate it
as a convex and box-constrained optimization problem where the projection
is trivial to compute. Therefore the application of the SPG method became
a suitable choice.

2 Reconstruction problem

A main problem in connection with DT refers to the image reconstruction.
We consider a BT image reconstruction problem where the imaging process
is represented by the following linear system of equations

Ax = b, A ∈ R
m×n, x ∈ {0, 1}n, b ∈ R

m. (1)

The matrix A is a so called projection matrix, whose each row corresponds to
one projection ray, the corresponding components of vector b contain the de-
tected projection values, while binary-vector x represents the unknown image
to be reconstructed. The row entries ai of A represent the length of the inter-
section of pixels of the discretized volume and the corresponding projection
ray, see Figure 1. Components of the vector x are binary variables indicating
the membership of the corresponding pixel to the object: for xi = 1 pixel
belongs to the object, while for xi = 0 does not. In a general case the system
(1) is under-determined (m < n) and has no unique solution. Therefore the
minimization of the squared projection error,

min
x∈{0,1}n

‖Ax − b‖2
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Figure 1: The discretization model. The corresponding reconstruction prob-
lem is represented in a form of a linear system of equations, see (1).

can not lead to the satisfactory result. To avoid this problem an appropriate
prior regularization is need. We consider a well know smoothness prior defined
by ∑

i

∑

j∈N(i)

(xi − xj)
2, (2)

where N(i) represents a set of indices of image neighbour pixels right and
below from xi. This prior is quadratic and convex and its role is to enforce
the spatial coherency of the solution. In this paper we focus on the binary
tomography problem given by

min
x∈{0,1}n

Φα(x), (3)

where the objective function is defined by

Φα(x) =
1

2


‖Ax − b‖2 + α

∑

i

∑

j∈N(i)

(xi − xj)
2


 , (4)

parameter α > 0 is the balancing parameter between projection error and
smoothing term. First term in (4) measures the accordance of a solution with
a projection data while a rule of the last term is to enforce the coherency of
the solution.

2.1 SPG Optimization Algorithm

In this section we give a short description of the SPG optimization algorithm.
It is a deterministic, iterative algorithm, introduced by Birgin, Mart́ınez and
Raydan (2000) in [2] for solving a convex-constrained optimization problem

min
x∈Ω

f(x),
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Figure 2: Phantom images used in our experiments. All images have the
same resolution 64 × 64.

where the feasible region Ω is a closed convex set in Rn. The requirements
for application of SPG algorithm are: i) f is defined and has continuous
partial derivatives on an open set that contains Ω; ii) the projection PΩ

of an arbitrary point x ∈ Rn onto a set Ω is defined. The algorithm uses
the following parameters: integer m ≥ 1; 0 < αmin < αmax, γ ∈ (0, 1),
0 < σ1 < σ2 < 1 and initially α0 ∈ [αmin, αmax] (see [3] for details). Starting
from an arbitrary configuration x0 ∈ Ω, the below computation is iterated
until convergence.

SPG iterative step [3].

Given xk and αk, the values xk+1 and αk+1 are computed as follows:

dk = PΩ(xk − αk∇f(xk)) − xk;
fmax = max{f(xk−j) | 0 ≤ j ≤ min{k,m − 1}};
xk+1 = xk + dk; δ = 〈∇f(xk), dk〉; λk = 1;
while f(xk+1) > (fmax + γλkδ)

λtemp = − 1
2λ2

k/(f(xk+1) − f(xk) − λkδ);
if (λtemp ≥ σ1 ∧ λtemp ≤ σ2λ) then λk = λtemp else λk = λk/2;
xk+1 = xk + λkdk;

end while;
sk = xk+1 − xk; yk = ∇f(xk+1) −∇f(xk); βk = 〈sk, yk〉;
if βk ≤ 0 then αk+1 = αmax else αk+1 = min{αmax,max{αmin, 〈sk, sk〉βk}}

The SPG algorithm is particularly suited for the situations when the pro-
jection calculation is inexpensive, as in box-constrained problems, and its
performance is shown to be very good in large-scale problems (see [3]).



3 The proposed method

We transform the binary tomography problem (3) to the convex-constrained
problem defined by

min
x∈[0,1]n

Φα(x) + µ · xT (e − x) , µ > 0 (5)

where e = [1, 1, 1, .., 1]n. In (5) we relax the feasible set of the optimization
to the convex set, [0, 1]n and add a concave regularization term xT (e − x)
with aim to enforce binary solution. Parameter µ regulates the influence of
this term. Due to the convex smoothness regularization (2) and the concave
binary enforcing regularization the problem (5) belongs to the class of convex-
concave regularized methods [17, 13]. Soundness of the problem (5) is ensured
by the following theorem which establishes an equivalence between (3) and
(5).

Theorem 1 [6, 9] Let E be Lipschitzian on an open set A ⊃ [0, 1]n and twice
continuously differentiable on [0, 1]n. Then there exist a µ∗ ∈ R such that for
all µ > µ∗:

(i) the integer (binary) programming problem
min

x∈{0,1}n

E(x)

is equivalent with the concave minimization problem
min

x∈[0,1]n
E(x) + 1

2µ〈x, e − x〉,

(ii) the function E(x) + 1
2µ〈x, e − x〉 is concave on [0, 1]n.

Requirements for application of the SPG algorithm for solving the prob-
lem (5) are satisfied. Indeed, it is obvious that the objective function is
differentiable and the projection onto a feasible set Pr is given by

[Pr(x)]i =





0, xi ≤ 0
1, xi ≥ 1
xi, elsewhere

, where i = 1, . . . , n . (6)

where x ∈ R
n. Pr is a projection with respect to the Euclidean distance and

its calculation is inexpensive. Therefore the SPG algorithm is suitable choice
for solving (5) for every fixed µ > 0.

Our strategy is to solve a sequence of optimization problems (5), with
gradually increasing µ, which will lead to a solution of the binary solution.
More precisely, we suggest the following optimization algorithm.

SPG Algorithm for binary tomography.

Parameters: εin > 0; εout > 0; δ > 1; µ0; maxit .
x0 = [0.5, 0.5, . . . , 0.5]T ; µ = µ0; k = 0;
do



do

xk+1 from xk by SPG iterative step; k = k + 1;
until ‖ PΩ(xk −∇Φ(xk)) − xk ‖> εin and k < maxit
µ = δ ∗ µ;

until max
i

{min{xk
i , 1 − xk

i }} > εout.

The initial configuration is the image with all pixel values equally to 0.5.
In each iteration in the outer loop we solve an optimization problem (5)
for a fixed binary factor µ > 0 by using the SPG method. By iteratively
increasing the value of µ in the outer loop the binary solutions are enforced.
The termination criterion for the outer loop, εout, regulates the tolerance for
the finally accepted (almost) binary solution.

It is easy to show that the function Φα is quadratic and convex, see for
example [13]. However, by increasing the µ factor during the optimization
process the influence of the concave regularization term becames larger which
leads to the non-convex objective function. Therefore, we cannot guaranty
that this approach always end up in a global minimum. However, experimen-
tal results in section 4 show its very good performance.

An important characteristic of this method is its flexibility regarding the
inclusion of other or additional constraints and regularization terms, for ex-
ample the Gibbs prior, see [17]. The only requirement is the differentiability
of the constraint.

4 Experimental results

In this section we compare the performance behavior of the SPG method with
the well know SA method. SA algorithm in [15] is compered with a power-
ful DC based reconstruction algorithm for binary tomography introduced by
Schüle et al. in [13]. The main conclusion of this Benchmark evaluation was
that ”there is no huge difference between the qualities of the reconstructed
images of the two methods”. This fact gives more validity for our evaluation.

We performed experiments on the binary test images (phantoms) pre-
sented in Figure 2. Reconstruction problems are composed by taking parallel
projections from different directions. We take 64 parallel projections for each
direction. Regarding to direction we distinguish reconstructions with 2,3,5
and 6 projections. For 2,3 and 5 projections directions are uniformly chosen
within [00, 900] and for 6 projections within [00, 1500].

The quality of reconstruction (solution) is measured by the following two
error measure functions

E1(x) = ‖Ax − b‖,

E2(x) = ‖x − x∗‖1,

where x is the reconstructed image. Function E1 measures the accordance
with the projection data, while E2 gives the number of failed pixels in compare
with the original image x∗.



Simulated Annealing (SA) is a stochastic optimization algorithm based on
the simulation of physical process of slow cooling of the material in a heat
bath. Based on the ideas from a paper published by Metropolis et al.(1953)
[12] the SA algorithm is introduced by Kirkpatrick et. al.(1983) [10]. In our
experiments we use the following SA algorithm adapted for BT problem by
Weber et al. in [15].

SA Algorithm.

Parameters:
α > 0; Tstart > 0; Tmin > 0; Tfactor ∈ (0, 1); S > 0.
Initial variable setting:
x = [0, 0, . . . , 0]T ; T = Tstart; Snr = 0; Eold = Φα(x0).
while (T ≥ Tmin) ∧ (Snr < S)

for i = 1 to sizeof(x),
choose a random position j in the vector x;
x̃ = x;
x̃[j] = 1 − x[j];
Enew = Φα(x̃);
z = rand();
∆E = Enew − Eold;
if ∆E < 0 ∨ exp(−∆E/T ) > z, then

x = x̃ {accept changes}
Eold = Enew; Snr = 0;

end if

end for

T = T ∗ Tfactor; Snr = Snr + N ;
end while.

For SA based reconstructions we use the following parameter settings:
α = 5, Tstart = 4, Tmin = 10−14, Tfactor = 0.97, S = 10 ∗ sizeof(x). The SPG
algorithm is implemented in Matlab. Its parameter settings is the following:
α = 3, δ = 1.2, Ein = 0.1, Eout = 0.001, maxit = 100.

Proj. Alg. PH1 PH2 PH3
2 SA 7.874/806 6.782/950 7.615/1177

SPG 6.324/849 5.831/499 11.225/1432
3 SA 2.554/3 9.587/580 11.959/858

SPG 2.554/3 3.182/ 3 11.769/1198
5 SA 0/0 4.030/3 17.015/589

SPG 0/0 3.070/2 12.321/538
6 SA 0/0 3.444/2 0/0

SPG 0/0 2.205/1 0/0

Table 1: The measured error values E1(x)/E2(x) of the reconstructed images.
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Figure 3: The phantom images reconstructed from 2, 5 and 6 projections
without noise.
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Figure 4: Phantom images reconstructed from 5 and 6 projections from noisy
projection data.

Quality of reconstructed images we can follow in Table 1 and also in Figure
3. The results are similar or exactly the same, expect reconstructions of PH2
for 3 projections where SPG has better solution and PH3 for 2 projections
where SA has better solution. Figure 4 represents reconstructions obtained
from corrupted data (projection vector) with a Gaussian white noise with
standard deviation 5. The results are very similar.

5 Conclusion

We successfully developed an optimization method based on the SPG algo-
rithm for binary tomography reconstruction problem. Performance evaluation
based on the comparison with SA method shows its competence regarding to
the quality of reconstructions.
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