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Abstract: Process models play important role in computer aided process engineering. 
Although the structure of these models is a priori known, model parameters should be 
estimated based on experiments. The accuracy of the estimated parameters largely depends 
on the information content of the experimental data presented to the parameter 
identification algorithm. Optimal Experiment Design (OED) can maximize the confidence 
on the model parameters. Considering that OED is an iterative process, it may happen that 
the designed experiment contains segments which are not or less useful for parameter 
identification. Using the tools of the OED there is the opportunity to qualify the segments of 
the time-series of different data sets. After the segmentation, it will be possible to choose 
the most appropriate segments for identification of each parameter, i.e. to determine the 
parameters as accurate as possible. 
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1 Introduction 

Process models play important role in computer aided process engineering since 
most of advanced process monitoring, control, and optimization algorithms rely on 
the process model. Unfortunately, often some of the parameters of these models 
are not known a priori, so they must be estimated from experimental data. The 
accuracy of these parameters largely depends on the information content of the 
experimental data presented to the parameter identification algorithm [1]. 

1.1 Contribution 

In this paper, the problem of creating identification algorithm is investigated. We 
present a new and intuitive segmentation based method, which makes possible to 
identify each parameter in the most appropriate time frame of the experimental 
data. With the help of this method, it becomes possible to reduce the number of 
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experiments and at the same time reduce the time consumption of parameter 
estimation since a considered time segment is useless in a certain point of view, 
but from another aspect the same time series segment can be applicable to 
determine other parameters. 

The rest of the paper is organized as follows. In Section 2, the previous works 
related to OED are reviewed. Section 3 and Section 4 present the theoretical 
background of our work, i.e. the applied segmentation method and classical OED, 
while Section 5 conducts our approach through a case study. Finally, we present 
our conclusions and suggestions for future work. 

2 Previous Work 

Optimal Experiment Design (OED) can maximize the confidence on model 
parameters through optimization of the input profile of the system. For parameter 
identification of different dynamic systems and models, this approach has been 
already utilized in several studies [2-6]. OED uses an iterative algorithm where the 
optimal conditions of the experiments or the optimal input of the system depends 
on the current model, which parameters were estimated based on the result of the 
previously designed experiment. Consequently, experiment design and parameter 
estimation are solved iteratively, and both of them are based on nonlinear 
optimization of cost functions. 

That means in practice, the applied nonlinear optimization algorithms have great 
influence on the whole procedure of OED, because for nonlinear dynamical 
models the design of the experiment is a difficult task. This problem is usually 
solved by several gradient-based methods e.g. nonlinear least squares method or 
sequential quadratic programming. Several gradient computation methods are 
described in [7]. In [8] extended maximum likelihood theory is applied for 
optimizing the experiment conditions. 

3 Segmentation 

A univariate m-element time series, x = [x(1),x(2),…,x(m)], is a column vector, 
where x(i) is the ith element. The ith segment of x is a set of consecutive time 
points, Si(a,b) = [x(a), x(a+1),…, x(b)], while the c-segmentation of x is a partition 
of x to c non-overlapping segments,  Sc

x = [S1(1,a), S2(a+1,b), …, Sc(k+1,m)]. In 
other words, a c-segmentation splits x to c disjoint time intervals, where 1 ≤ a and 
k ≤ m. 
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The simplest but yet powerful segmentation technique for univariate time series is 
PAA. In this case, to reduce the m-length data from N, the time series are simply 
divided into N similar sized frames and each frame is represented by its mean 
value. Assuming that N is a factor of m, we get: 
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where x(i) represents the ith PAA segment of x. Please note, PAA is not the most 
straightforward segmentation method but it is perfectly suits for our case study as 
it can be seen in Section 5. 

 
Figure 1 

The original signal (top) and its PAA representation (bottom) using 10 segments 

4 Classical Optimal Experiment Design 

The case study considered in this paper belongs to the following general class of 
process models: 
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where u is the vector of the manipulated inputs, y is the vector of the output, x 
represents the state of the system and p denotes the model parameters. The p 
parameters are unknown and should be estimated using the data taken from 
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experiments. The estimation of these parameters is based on the minimization of 
the square error between the output of the system and the output of the model: 
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where ỹ(u(t)) is the output of the system for a certain u(t) input profile, and y(u(t)) 
is the output of the model for the same u(t) input profile with p parameters. Q is a 
user supplied square weighting matrix that represents the variance measurement 
error. The basic element of the experiment design methodology is the Fisher 
information matrix F, which combines information on the output measurement 
error and the sensitivity of the model outputs y with respect to the model 
parameters: 
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The sensitivities are calculated based on the partial derivatives of the model 
parameters. As the true parameters p* are unknown during experiment design, the 
derivatives are calculated near to the so-called nominal parameters p0, which can 
be given by some initial guess, extracted from literature or estimated from the 
previous experiments. The optimal design criterion aims the minimization of a 
scalar function of the F matrix. Several optimal criterion exist, we present D-
optimal1 and E-optimal2 criterion suggested by Bernaerts et al. [1]: 
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If the p0 nominal parameters are far from the p* true parameters, convergence 
cannot be guaranteed after the first optimal design. So an iterative design scheme 
is needed to obtain convergence from p0 to p* (Fig. 2). 

Both the parameter estimation and the experiment design steps of this iterative 
scheme represent a complex nonlinear optimization problem, hence the 
effectiveness of the applied optimization algorithms have great influence on the 

                                                           
1 Minimizes the determinant of the covariance matrix and thus minimizes the volume of 

the joint confidence region 
2 Minimizes the condition number of F, i.e. the ratio of the largest to the smallest 

eigenvalue of the Fisher matrix 
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performance of the whole procedure. The classical solution is to use nonlinear 
least squares (NLS) algorithm for parameter estimation Eq. 4, and sequential 
quadratic programming (SQP) for the experiment design Eq. 8. 
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Figure 2 

Scheme of the classical sequential design of experiments 

5 Application Example 

5.1 Process Description 

The reactor what have been studied is a SISO (single input-single output) process, 
a continuously stirred tank reactor (CSTR) where a free radical polymerization 
reaction of methyl-metacrylate is considered using azobisisobutironitil (AIBN) as 
initiator, and toulene as solved. The aim of the process is to produce different 
kinds of product grades. The number-average molecular weight is used for 
qualifying the product and process state, and it can be influenced by the inlet 
initiator flow rate. When this assumption is considered, and the effect of the 
temperature is neglected, the multi input-multi output model could be reduced to a 
SISO process. Because of the isothermal assumption, a four-state model can be 
obtained [9]. 
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Figure 3 

The configuration of SISO process 
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where: 
Cm – concentration of the monomer in the reactor 
Cm,in – monomer concentration in feed 
CI  – initiator concentration in the reactor 
CI,in  – initiator concentration in feed 
kp, kfm, kI, kTc, kT  – kinetic parameters and 
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D0 is the zero order moment of the chain length distribution of the inactive 
polymer chain, which represents the length of inactive chains. D1 is the first order 
moment of inactive polymer chains, which means the distribution of molecular 
weight of inactive chains. The number-average molecular weight, represented by 
y, cannot be measured, but it is calculated, as can be seen in the Eq. 13. 
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Figure 4 

Segmentation of time series of E criteria and the segments of the experimental time series 

5.2 Example for Using OED Tools and Segmentation 

This paper introduces the combination of OED tools and time series segmentation 
for support parameter identification through a case study of the previously 
presented polymerization reactor. 

The model of the reactor is used as the operating plant and at the same the model 
also represents the process model that needs some of its parameters to be 
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identified. Imagine that kp and ki kinetic parameters are not known properly and 
previously an experiment was carried out to determine the parameters. 

Expression Eq. 8 was applied as the basis of extracting more information from 
these time series. It means that lower value the cost function E has, indirectly the 
considered time series segment is more and more appropriate for identification 
purposes. Directly the value of the E criteria can express the potential information 
content of the examined input signal segment regarded to the considered 
parameters. That is why important to examine the value of E optimal criteria as 
function of time over the period of the experiment. 

0 5 10 15 20 25 30

1

1.2

1.4

1.6

1.8

2

x 10
4

Time (h)

N
um

be
r 

av
er

ag
e 

m
ol

ec
ul

ar
 w

ei
gh

t 
(k

g/
km

ol
)

Result of the identification

 
Figure 5 

Result of the identification (circles – experimental data, full line – model output) 

Performing the presented PAA method for segmentation of time series of E – and 
indirectly throughout this the original experimental time series also – we have the 
possibility to separate the useful time series segments from the time series 
segments with less information content. The result of the segmentation is shown 
by Fig. 4. 
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As it can be seen, the experiment can be divided into 3 parts. The first and the last 
segments have lower E value than the middle one. This means that input signal of 
these segments have potentially more information content that the middle segment 
possess. That is why middle segment can be neglected during the process of 
parameter identification. 

In Fig. 5 the result of the identification is presented. During identification, the first 
and last time series segments were applied. As it can be seen, the parameter fitting 
for the model was pretty successful since the output of the model is equal to the 
experimental data. 

Conclusion 

Determination of model parameters of process models is a crucial issue since 
process models play important role in computer aided process engineering. That is 
why the aim of this paper was to introduce a new approach of applying the 
existing time series from the previous experiments throughout an example of a 
polymerization reactor. This approach combines the tools of Optimal Experiment 
Design (Fischer matrix based E and E optimal criteria) and time series 
segmentation to extract relevant information for parameter identification. The 
introduced case study expresses the applicability of this approach; however, our 
work is in the beginning of its way. 
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