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Abstract: The Vehicle Routing Problem (VRP) is a complex combinatorial optimization 
problem that can be described as follows: given a fleet of vehicles with uniform capacity, a 
common depot, and several costumer demands; find the set of routes with overall minimum 
route cost which service all the demands. The multiple traveling salesman problem (mTSP) 
is a generalization of the well-known traveling salesman problem (TSP), where more than 
one salesman is allowed to be used in the solution. It is well-known that mTSP-based 
algorithms can also be utilized in several VRPs by incorporating some additional site 
constraints. The aim of this chapter is to review how genetic algorithms can be applied to 
solve these problems and to propose a novel, interpretable representation based algorithm.   
The elaborated heuristic algorithm is demonstrated by examples considering different 
round tour types determination of further tasks for optimal operation of the distribution 
system for instance the modification of the vehicle capacity, and the effects of change of 
cost elements and data structure. 
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1 Introduction 

The aim of logistics is to get the right materials to the right place at the right time, 
while optimizing a given performance measure (e.g. minimizing total operating 
costs) and satisfying a given set of constraints (e.g. time and capacity constraints). 
In most distribution systems goods are transported from various origins to various 
destinations. For example, many retail chains manage distribution systems in 
which goods are transported from a number of suppliers to a number of retail 
stores. It is often economical to consolidate the shipments of various origin-
destination pairs and transport such consolidated shipments in the same truck at 
the same time. There are many ways in which such consolidation can be 
accomplished. In this paper tools developed for Vehicle Routing Problem (VRP) 
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related to the optimization of one to many distribution systems will be studied, and 
a novel genetic algorithm based solution will be proposed. 

The multiple traveling salesman problem (mTSP) [4] is a generalization of the 
well-known traveling salesman problem (TSP) [13], where one or more salesman 
can be used in the solution. Because of the fact that TSP belongs to the class of 
NP-complete problems, it is obvious that mTSP is an NP-hard problem thus it's 
solution require heuristic approach. 

In the case of mTSP, ambiguous number of cities exist and all of the cities must be 
visited exactly once by the salesmen who all start and end at the depot. The 
number of cities is denoted by n  and the number of salesman by m . In this paper 
the single depot case is studied, where all salesman start from and end their tours 
at a single point. The number of salesmen is assumed to be known a priori, but it 
is bounded based on the maximal size of the fleet of vehicles. Since the number of 
salesmen is not fixed, each salesman has an associated fixed cost incurring 
whenever is used in the solution. This results in the minimization of the number of 
salesman to be activated in the solution. Time windows are often incorporated to 
the mTSP (referred as mTSPTSW), where it is also defined that certain nodes 
need to be visited in specific time periods. In the studied case only the time-length 
of the tours are constrained, which is almost identical constraint defined on the 
maximum distance a salesman can travel. 

The main goal is to minimize the total traveling cost of the above problem that is 
often formulated as assignment based integer linear programming [4]: 
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where }1,0{∈ijx  is a binary variable used to represent that an arch is used on the 

tour, ijc  is the cost associated to the distances between the i th and j th nodes, 

and mc  represents the cost of the involvement of one salesmen. 

2 Literature Review 

In the last two decades the traveling salesman problem received quite big 
attention, and various approaches have proposed to solve the problem, e.g. branch-
and-bound [9], cutting planes [18], neural network [5] or tabu search [12]. Some 
of these methods are exact algorithms, while others are near-optimal or 
approximate algorithms. The exact algorithms use integer linear programming 
approaches with additional constraints. 

The mTSP is much less studied like TSP. [4] gives a comprehensive review of the 
known approaches. There are several exact algorithms of the mTSP with 
relaxation of some constraints of the problem, like [10], and the solution in [2] is 
based on Branch-and-Bound algorithm. 

Due to the combinatorial complexity of mTSP, it is necessary to apply some 
heuristic in the solution, especially in real-sized applications. One of the first 
heuristic approach were published by Russell [22] and an other procedure is given 
by Potvin et al. [15]. The algorithm of Hsu et al. [6] presented a Neural Network-
based solution. 

More recently, genetic algorithms (GAs) are successfully implemented to solve 
TSP [11]. Potvin presents a survey of GA approaches for the general TSP [21]. 

2.1 Genetic Algorithms for mTSP 

Lately GAs are used for the solution of mTSP too. The first result can be bound to 
Zhag et al. [25]. Most of the work on solving mTSPs using GAs has focused on 
the vehicle scheduling problem (VSP) ([17], [19]). VSP typically includes 
additional constraints like the capacity of a vehicle (it also determines the number 
of cities each vehicle can visit), or time windows for the duration of loadings. 
Recent application can be found in [16], where GAs were developed for hot 
rolling scheduling. It converts the mTSP into a single TSP and apply a modified 
GA to solve the problem. You et al. [26] use GAs to solve the mTSP in path 
planning. 

A new approach of chromosome representation, the so-called two-part 
chromosome technique can be found in [7] which reduces the size of the search 
space by the elimination of redundant solutions. In the literature there can be 
found several examples that a good problem-specific representation can 
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dramatically improve the efficiency of genetic algorithms. A problem-specific 
individual design can reduce the search-space, and with special representation it is 
needed to implement special operators which can simulate the nature of the 
problem. These properties can make the problem-specific genetic algorithm more 
effective for the given task and it becomes more easily interpretable. The 
representation discussed here is very similar to the characteristic of mTSP. 

3 The Proposed GA-based Algorithm to Solve the 
mTSP 

GAs are relatively new global stochastic search algorithms which based on 
evolutionary biology- and computer science principles [14]. Due to the effective 
optimization capabilities of GAs [3], it makes these technique suitable solving 
TSP and mTSP problems. 

3.1 Problem Representation 

There are several representations of mTSP, like one chromosome technique [25], 
the two chromosome technique [17, 19] and the latest two-part chromosome 
technique [7]. The new approach presented here is a so-called multi-chromosome 
technique which will be discussed below. This approach is used in notoriously 
difficult problems to decompose complex solution into simpler components. It 
was used in mixed integer problem [20] or in order problems [1]. A usage of 
routing problem optimization can be seen in [23] and a lately solution of a 
symbolic regression problem in [8]. This paper discusses the usage of multi-
chromosomal genetic programming in the optimization of mTSP. 

Figure 1 illustrates the new chromosome representation for mTSP with 15 
locations ( 15=n ) and with 4 salesmen ( 4=m ). 
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Figure 1 

Example of multi-chromosome representation for n = 15 and m = 4 
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The figure above illustrates an individual of the population. Each individual 
represents a solution of the problem. The first chromosome represents the first 
salesman itself so each gene denotes a city (depot is not presented here, it is the 
first and the last station of each salesman). This encoding is so-called permutation 
encoding. It can be seen in the example that salesperson 1 visits 4 cities: city 
2,5,14 and 6, respectively. In the same way, chromosome 2 represents salesperson 
2 and so on. 

3.2 Operators 

Because of our new representation, implementation of new genetic operators 
became necessary, like mutation operators. Only an overview of the operators are 
given in this subchapter. 

There are two sets of mutation operators, the so-called In-route mutations and the 
Cross-route mutations. In-route mutation operators work inside one chromosome. 
The first operator chooses a random subsection of a chromosome and inverts the 
order of the genes inside it (Figure 2). The second operator reverses two randomly 
chosen genes in the given chromosome (Figure 3) and the third put a randomly 
chosen gene into a given place as it can be seen in Figure 4. 

 
Figure 2 

In-route mutation – gene sequence inversion 

 
Figure 3 

In-route mutation – gene transposition 

 
Figure 4 

In-route mutation – gene insertion 
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Cross-route mutation operates on multiple chromosomes. If we think about the 
distinct chromosomes as individuals, this method could be similar to the regular 
crossover operator. Figure 5 illustrates the method when randomly chosen 
subparts of two chromosomes are transposed. If the length of one of the chosen 
subsections is equal to zero, the operator could transform into an interpolation. 

 
Figure 5 

Cross-route mutation – gene sequence transposition 

On Figure 6 it can be seen a contraction of two chromosomes. In this situation the 
number of routes in the newly created individual is decreased by one. 

 
Figure 6 

Cross-route mutation – chromosome contraction 

Figure 7 illustrates the inverse operation of chromosome contraction. In this case a 
single chromosome is partitioned into two new chromosomes in the newly created 
individual, thus the number of salesmen is incremented by one. 

3 7 2 4 

17 

15 11 

5 

9 16 

1 18 19 

10 8 13 14

20

12 

6 

3 7 2 4 

17 

15 11 

5 

6 20 1 18 19 

10 8 13 14 9 16 12 

3 7 8 9 

17 

4 16 

5 

6 20 1 18 19 

10 2 13 14

12

11 

15

3 7 2 4 

17 15 

11 

5 

6 20 1 18 19 

10 8 13 14 9 16 

12 



Magyar Kutatók 10. Nemzetközi Szimpóziuma 
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 321 

 
Figure 7 

Cross-route mutation – chromosome partition 

3.3 Genetic Algorithm 

Every genetic algorithm starts with an initial solution set consists of randomly 
created chromosomes. This is called population. The individuals in the new 
population are generated from the previous population’s individuals by the 
predetermined genetic operators. The algorithm finishes if the stop criteria is 
satisfied. 

Obviously for a specific problem it is a much more complex task, we need to 
define the encoding, the specific operators (see also in previous chapter) and 
selection method.  

3.3.1 Fitness Function 

The fitness function assigns a numeric value to each individual in the population. 
This value define some kind of goodness, thus it determines the ranking of the 
individuals. The fitness function is always problem dependent. 

In this case the fitness value is the total cost of the transportation, i.e. the total 
length of each round trip. The fitness function calculates the total length for each 
chromosome, and summarizes these values for each individual. This sum is the 
fitness value of a solution. Obviously it is a minimization problem, thus the 
smallest value is the best. 
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3.3.2 Selection 

Individuals are selected according to their fitness. The better the chromosomes 
are, the more chances to be selected they have. The selected individuals can be 
presented in the new population without any changes (usually with the best 
fitness), or can be selected to be a parent for a crossover. We use the so-called 
tournament selection because of its efficiency. 

In the course of tournament selection, a few (tournament size, min. 2) individuals 
are selected from the population randomly. The winner of the tournament is the 
individual with the best fitness value. Some of the first participants in the ranking 
are selected into the new population (directly or as a parent). 

3.4 Complexity Analysis 

Using the multi-chromosome technique for the mTSP reduces the size of the 
overall search space of the problem. Let the length of the first chromosome be 1k , 

let the length of the second be 2k  and so on. Of course nkm
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It is necessary to determine the length of each chromosome too. It can be 
represented as a positive vector of the lengths ),,,( 21 mkkk …  that must sum to 
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requirement [24]. Thus, the solution space of the new representation is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

1
1

!
m
n

n . It is equal with the solution space in [7], but this approach is more 

similar to the characteristic of the mTSP, so it can be more problem-specific 
therefore more effective. 
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4 Illustrative Example 

Although the algorithm was tested with a big number of problems, only two 
illustrative results is given in this article. The algorithm has implemented in 
MATLAB, tiny refinements in constraints are in progress. 

Figure 8 below illustrates the result of the optimization with 19 (right) and 25 
(left) cities. It results that 2 salesmen is the optimal for this problem in both cases. 
In this test issue, the maximal route length was 500 kilometers and the maximal 
traveling duration was 9 hours. The resulted 2 tour with 19 cities were 425 km and 
298 km long, the durations were 501 minutes and 366 minutes, respectively. 
These values were 346 km, 456 km and 430 minutes, 539 minutes with 25 cities 
respectively. 

 
Figure 8 

Illustrative result of the optimization – 25 and 19 cities 

The second example on Figure 9 illustrates the result of the optimization with 25 
cities and with 450 km maximal route length constraint. It results that 3 salesmen 
is the optimal for this problem. The resulted 3 tour were 360, 357 and 390 
kilometers long, respectively. It can be seen that the approach is more sensitive for 
the length of the tours than the number of cities. 

In every case, the running time was between 1 and 2 minutes. The genetic 
algorithm has made 100 iterations, because experiences have shown that this 
number is sufficient for the optimization. 
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Figure 8 

Illustrative result of the optimization – 450 km maximal route length 

Obviously the algorithm is highly sensitive for the number of iterations. The 
running time is directly proportional to the iteration number, but the resulted best 
solution can’t get better after a specific time. If the constraints become tighter, the 
duration time will increase slightly. With 500 maximal tour lengths, it is about 90 
seconds, and with 450 it is about 110 seconds. The maximal tour length (or 
equivalently the maximal duration per tour) has a big effect of the number of 
salesman needed. The tighter the constraints are, the bigger the number of 
salesman we need. However narrower restrictions forth more square round trips. 

Conclusions 

In this paper a detailed overview was given about the application of genetic 
algorithms in vehicle routing problems. It has been shown that the problem is 
closely related to the multiple Traveling Salesman Problem. A novel 
representation based Genetic algorithm has been developed to the specific one 
depot version of mTSP. The main benefit is the transparency of the representation 
that allows the effective incorporation of heuristics and constrains and allows easy 
implementation. After some final touches, the supporting MATLAB code will be 
also available at the website of the authors. 
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