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Abstract: Some frequently employed algorithms in engineering, are parallel by 
nature (embarrasingly parallel algorithms) and some others can be parallelized 
via data parallelization. Algorithms like probability analysis, linear homotopy 
continuation method, Gauss-Jacobi combinatorial technique are belonging to the 
first group, while others like algorithms for digital image processing as well as 
reduced Groenber basis application to solving systems of polynomial equations 
fall into the other category. In this case study we illustrate how Mathematica can 
manage to evaluate such algorithms parallel on a multicore machine. The analysis 
of the efficiency of the computation and the net reduction of the execution time are 
presented by three examples as well as some useful tips are given to avoid pitfalls 
and utilize the advantages of parallel processing. 

Keywords: parallel computation, multicore processor, Monte-Carlo method, Gauss-Jacobi 
Algorithm, color quantization. 

1 Introduction 

On one hand, widespreading of multicore PC's in the market provides ample proof 
that we are in the multicore era. In years to come probably the number of cores 
packed into a single chip will represent the increasing computational power 
instead of the clock frequency of the processor, which has reached its limit and  
will likely stay below 4 GHz for a while. 

On the other hand, popular computational software systems like MATLAB and 
Mathematica extended their codes with simple instructions and functions collected 
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in a toolbox or in an application providing a comfortable access and realization of 
parallel computations on multicore desktop or even laptop computers. 

Consequently, parallel computing can be utilized by not only experts but engineers 
and scientists having no special knowledge in this area. However, despite of the 
easy accesable hardwares and the simple user friendly softwares, there are some 
pitfalls and tricks, which good to know in order to avoid unexpected negative 
effects and problems as well as to be able to exploit the advantages of a multicore 
system. 

Using illustrative examples, important features of parallel computation will be 
demonstrated and show how some frequently employed algorithms can be 
efficiently evaluated in parallel. 

1.1 Implicit and Explicit Parallelism 

Multicore processors is a processing system composed of two or more 
independent cores. The amount of performance gained by the use of a multicore 
processor is strongly depended on the software algorithms and implementation. In 
particular, the possible gains are limited by the fraction of the software that can be 
"parallelized" to run on multiple cores simultaneously; this effect is described by 
Amdahl's law. In the best case, so-called embarrasingly parallel problems may 
realize speedup factors near the number of cores. Many typical applications, 
however, do not realize such large speedup factors, and thus the parallelization of 
software is a significant on-going topic of research. 

On multicore machine so many indpendent processes can be executed in parallel 
as many cores the machine has. However using so called multithreading execution 
model allowing to realize further parallelization (since within the context of a 
single process running on one core) more concurrently tasks sharing same 
resources can be executed. 

For example, we used Nehalem i7 (Bloomfield) 940 processor, which has four 
cores and using simultaneous multithreading enabling two threads per core [1]. 

Some of the programming languages are able to exploit multicore and 
multithreading ability, automatically, partly or fully, without any special directives 
of the programming language. This characteristic of a programming language is 
called implicit parallelism. Mathematica also supports automatically the 
parallelization of some operations, but in modest way, althoug already Version 5.2 
(2005) added automatic multi-threading when computations are performed on 
multi-core computers. 

Paralleism provided by the code extention and controlled by the user, namely 
using or not using parallel execution is called explicit parallelism. A feature of a 
programming language for a parallel processing system allows or forces the 
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programmer to annotate his program indicating which parts should be executed as 
independent parallel tasks. This is obviously more work for the programmer than a 
system with implicit parallelism (where the system decides automatically which 
parts to run in parallel) but may allow higher performance. Mathematica has many 
functions supporting explicit parallelism and we will use some of them in the 
following examples. 

2 Task Parallel 

The type of parallel jobs can be task parallel (embarrassingly parallel) and data 
parallel. In case of the task parallel, multiple workers work on different parts of 
the problem without communication between each others. Therefore, the result 
will be independent of the execution order. In the followings we demonstrate this 
type of evaluation by two examples. 

2.1 Ex. 1 - Infinite Slope Stability via Monte- Carlo Analysis 

We are going to compute the safety factor for an infinite slope subjected to given 
ground accelaration value occuring over a specified time period [2]. The safety 
factor μ, is the ratio of resisting forces to driving forces. A slope will be stable if 
the resisting forces exceed the driving forces and the factor of safety is greater 
than 1. We will use a simplified model of the infinite slope model. Let φ be the 
angle of internal friction (representing the frictional component of soil shear 
strength), β be the slope angle in degrees, and 0 ≤ H ≤ 1 is the dimensionless 
height of the prheatic surface above the base of the slide mass. The pseudostatic 
factor of safety of an infinite slope subjected to seismic acceleration is then, 

SeismicsFS
][Cos Cs][Sin

][Tan ])[Sin Cs][Cos )2/H1(( :_]Cs _,H _, _,[
β+β

φβ−β−
=βϕ  (1) 

in which Cs is a coefficient of seismic acceleration given in terms of the 
gravitational acceleration g. This is a generalization of the static model (Cs = 0). 

According to the USGS national earthquake hazard maps, a peak ground 
acceleration of 0.12 g has 0.10 probability of being exceeded in 50 years in 
Socorro, New Mexico. So we consider the following Mathematica function for 
computing the safety factor at a fixed Cs = 0.12 value, 

Slope[n_] := Module[{φ, β, H, result, i, s, Cs=0.12}, result={}; 

  Do[φ = Random[UniformDistribution[{30.°,35.°}]]; 

        β = Random[UniformDistribution[{20.°,25.°}]]; 
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        H = Random[LogNormalDistribution[-2.31,1.33]]; 

        s = SeismicsFS[φ, β,H,Cs]; 

       If[s ≥ 0, AppendTo[result, s]],{i, n}]; result] 

We will censor the offensive negative values by simply removing them. Let us 
consider 80 000 trials. The result can be seen in Figure 1. The computation time in 
this case is 27.703 sec. 

 

 
Figure 1 

The histogram of the distribution of the safety factor in case Cs = 0.12, employing 80 000 samples 

 

Realising the same scenario in parallel way (having eight threads, Figure 2) 

DistributeDefinitions[Slope, SeismicsFS] 

n = Table[10000,{8}] 

μ = Flatten[ParallelMap[Slope[#] & ,n] 

the computaion time is considerably decreased with result obtained in 2.7812 sec. 

We have checked the example for the other in parallel evaluation method too, 

n = Table[10000,{8}] 

DistributeDefinitions[Slope, SeismicsFS, n] 

μ = Flatten[WaitAll[Map[ParallelSubmit[Slope[#]]& , n]]] 

obtaining nearly the same computation time 2.7812 sec. 

The preformance metrics are summarized in Table 1. 
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Figure 2 

Status of the kernels in case of parallel Monte- Carlo simulation with the infinite slope model using 
ParallelMap. 

 

Table 1 
Performance of different types of the computations of the Monte- Carlo simulation with the infinite 

slope model. 

Comput. type 
Time 
(sec.) 

Speedup 
Efficiency 

(%) 
Relative 

unbalance 
Mean 

value of  μ 
Standard 
deviation 

Non-parallel 27.70 - 12.5 - 1.02153 0.180758 

ParallelMap 2.78 7.38 124.6 0.06 1.01886 0.183263 

ParallelSubmit 2.78 7.40 124.6 0.07 1.01827 0.183293 

 

2.2 Ex. 2 - Photogrammetric Positioning by Gauss- Jacobi 
Algorithm 

The relation between the coordinates of a ground point (Xi, Yi, Zi) and the 
coordinates of the corresponding point on the photo plain (xi, yi) can be 
represented by the following linear transformation (Figure 3),  
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where 

- η0, ξ0 are the coordinates of the perspective center on the photo plane; 

- f the focal length; 

- ki the scaling factor; 

- R the rotation matrix; 

- X0,Y0, Z0 the coordinates of the perspective center in the ground system. 

In general the focal length f is known, and the parameters of the transformation 
should be determined on the basis of the coordinates of 3 corresponding plane-
ground points. 

The problem with this representation of the transnformation is, that the scaling 
factor is different in the different points, therefore it is reasonable to eliminate it. 
Let us express the equations of the transformation for the three different 
coordinates, 

 
Figure 3 

Photogrammetric  3D resection. 
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))ZZ(R)YY(R)XX(R(kx 0i3,10i2,10i1,1i0i −+−+−=η−  
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Dividing the first and second equation by the third one and rearrange them, 
introducing rij= Ri,j we get 
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Now, we express the elements of the rotation matrix with the elements of the skew 
matrix, 
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The rotation matrix (where I3 is a 3x3 identity matrix) is 
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In our case given coordinate values of the ground points and image coordinates  
are in Table2 and  f = 153000. It means, we have 12 equations, but only 8 
unknown variables (a, b, c, X0, Y0, Z0, η0, ξ0). Consequently, our system is 
overdetermined. 

Let us employ the Gauss- Jacobi combinatorial algorithm. We have 6 
corresponding points and every 4 points represent 4 ×2 equations , see Eqs. (4). 
The number of the combinations is 15, so we should solve 15 subsets of eight 
equations. 
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Table 2 
Coordinate values of the ground points and image coordinates [3] 

Xi Yi Zi xi yi 

-460 -920 -153 18996.171 -64147.679 

460 -920 0 113471.749 -73694.266 

-460 0 0 16504.609 16331.649 

460 0 153 128830.826 21085.172 

-460 920 -153 13716.588 106386.802 

460 920 0 120577.473 128214.823 

 

The solution of the subsets takes 122.85 sec, therefore it is reasonable to employ 
parallel computation. Defining all variables involved in the computation as 
parallel variables, the parallel computation can be applied straight forward (here 
the application of the function Parallelize is recommended). 

As a result a considerably shorter running time, 34.54 sec. is obtained (Figure 4). 
It can be seen, that only 7 threads were activated and their tasks needed different 
running time. Indeed, the solutions have different types and different lenghts. 

The performance metrics are summarized in Table 3. The relative unbalance is based on the 
7 active threads. 

 

 
Figure 4 

Status of the kernels in case of parallel evaluation of the Gauss- Jacobi algorithm using  Parallelize 
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Table 3. Performance of computation of the Gauss- Jacobi combinatorial algorithm. 

Comput. type 
Time 
(sec.) 

Speedup 
Efficiency 

(%) 
Relative 

unbalance 

Non-parallel 122.86 - 12.5 - 

Parallelize 34.55 5.49 44.45 0.48 

3 Data Parallel 

Typically in this case data being analysed is too large for one computer (one core). 
In these cases each worker operates on part of the data and they may or may not 
communicate with each other. As illustration let us consider an example of digital 
image processing. 

3.1 Ex. 3 - Reducing Colors via Color Approximation 

On systems with 24 - bit color displays, truecolor images can display up to 16 
million (i.e. 224) colors. On systems with lower screen bit depths, truecolor images 
are still displayed reasonably well, using color approximation. Color 
approximation is the process by which the software chooses replacement colors in 
the event where direct matches cannot be found. One of the methods to carry out 
such color approximation is the color quantization [4]. 

An important term in discussions of image quantization is RGB color cube. The 
RGB color cube is a 3D array of all of the colors that are defined for a particular 
data type (Figure 5). Quantization involves dividing the RGB color cube into a 
number of smaller boxes, and then mapping all colors that fall within each box to 
the color value at the center of that box. 

If the actual image is big in size, one may divide the image into parts, and this 
quantization process can be carried out parallel on these image segments. 

Let us consider an airborne digital photo of Boston (Figure 6), a 4481 x 2881 size 
image, with 12 909 761 pixels. 

Let us divide the RGB cube into 10 subcubes, and carry out the color reduction by 
color quantization using ColorQuantize[pBoston,10]. The computation time 
obtained is 23.187 sec. 

Now let us divide the picture into eight parts (4481/4  = 1120 and 2881/2 = 1140) 

pP = ImagePartition[pBoston, {1120,1440}] 

see, Figure 7. 
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Figure 5 

 RGB color cube. 

 

 
Figure 6 

The considered airborne digital photo of Boston. 
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Figure 7 

Partitioned digital photo of Boston 

 

This computation required is 4.813 sec. 

Now, computing the color approximation of each subimage simultaneously, in 
parallel way, using ParallelSubmit takes only 6.64 sec. (Figure 8) 

DistributeDefinitions[ColorQuantize, pP] 

pS = WaitAll [Map [ParallelSubmit [ColorQuantize [#,10]] & ,pP]] 

Putting the parts together takes 0.11 sec, 

pR = ImageAssemble[Partition[pS,4]] 

Table 4 
Performance of the computation of color quantization. 

Comput. type 
Time 
(sec.) 

Speedup 
Efficiency 

(%) 
Relative 

unbalance 

Non-parallel 23.19 - 12.5 - 

Parallelize 6.64 7.01 43.66 0.26 
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Figure 8 

Status of the kernels in case of parallel evaluation of color quantization using  ParallelSubmit. 

The actual net win in running time becomes 006.2
11.064.681.4

19.23
=

++
. 

The performance metrics of this example are given in Table 4.  

Conclusions 

In this case study we have illustrated how Mathematica can manage time 
consuming algorithms parallel on a multicore machine. The considered three 
examples were analysed by the efficiency of the computation and the net reduction 
of the execution time. 
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