
Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 449

Mathematica Parallel Computing. Some Timing
Results on a Intel Nehalem Multicore Processor

Béla Paláncz1, Levente Kovács 2
1 Department of Photogrammetry and Geoinformatics, Faculty of Civil
Engineering, Budapest University of Technology and Economics, 1111 Budapest,
Műegyetem rkp. 3, Hungary; palancz@epito.bme.hu
2 Department of Control Engineering and Information Technology, Faculty of
Electrical Engineering and Informatics, Budapest University of Technology and
Economics, H-1117 Budapest, Magyar Tudósok krt. 2, Hungary;
lkovacs@iit.bme.hu

Abstract: Some frequently employed algorithms in engineering, are parallel by
nature (embarrasingly parallel algorithms) and some others can be parallelized
via data parallelization. Algorithms like probability analysis, linear homotopy
continuation method, Gauss-Jacobi combinatorial technique are belonging to the
first group, while others like algorithms for digital image processing as well as
reduced Groenber basis application to solving systems of polynomial equations
fall into the other category. In this case study we illustrate how Mathematica can
manage to evaluate such algorithms parallel on a multicore machine. The analysis
of the efficiency of the computation and the net reduction of the execution time are
presented by three examples as well as some useful tips are given to avoid pitfalls
and utilize the advantages of parallel processing.

Keywords: parallel computation, multicore processor, Monte-Carlo method, Gauss-Jacobi
Algorithm, color quantization.

1 Introduction

On one hand, widespreading of multicore PC's in the market provides ample proof
that we are in the multicore era. In years to come probably the number of cores
packed into a single chip will represent the increasing computational power
instead of the clock frequency of the processor, which has reached its limit and
will likely stay below 4 GHz for a while.

On the other hand, popular computational software systems like MATLAB and
Mathematica extended their codes with simple instructions and functions collected

B. Paláncz et al.
Mathematica Parallel Computing. Some Timing Results on a Intel Nehalem Multicore Processor

 450

in a toolbox or in an application providing a comfortable access and realization of
parallel computations on multicore desktop or even laptop computers.

Consequently, parallel computing can be utilized by not only experts but engineers
and scientists having no special knowledge in this area. However, despite of the
easy accesable hardwares and the simple user friendly softwares, there are some
pitfalls and tricks, which good to know in order to avoid unexpected negative
effects and problems as well as to be able to exploit the advantages of a multicore
system.

Using illustrative examples, important features of parallel computation will be
demonstrated and show how some frequently employed algorithms can be
efficiently evaluated in parallel.

1.1 Implicit and Explicit Parallelism

Multicore processors is a processing system composed of two or more
independent cores. The amount of performance gained by the use of a multicore
processor is strongly depended on the software algorithms and implementation. In
particular, the possible gains are limited by the fraction of the software that can be
"parallelized" to run on multiple cores simultaneously; this effect is described by
Amdahl's law. In the best case, so-called embarrasingly parallel problems may
realize speedup factors near the number of cores. Many typical applications,
however, do not realize such large speedup factors, and thus the parallelization of
software is a significant on-going topic of research.

On multicore machine so many indpendent processes can be executed in parallel
as many cores the machine has. However using so called multithreading execution
model allowing to realize further parallelization (since within the context of a
single process running on one core) more concurrently tasks sharing same
resources can be executed.

For example, we used Nehalem i7 (Bloomfield) 940 processor, which has four
cores and using simultaneous multithreading enabling two threads per core [1].

Some of the programming languages are able to exploit multicore and
multithreading ability, automatically, partly or fully, without any special directives
of the programming language. This characteristic of a programming language is
called implicit parallelism. Mathematica also supports automatically the
parallelization of some operations, but in modest way, althoug already Version 5.2
(2005) added automatic multi-threading when computations are performed on
multi-core computers.

Paralleism provided by the code extention and controlled by the user, namely
using or not using parallel execution is called explicit parallelism. A feature of a
programming language for a parallel processing system allows or forces the

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 451

programmer to annotate his program indicating which parts should be executed as
independent parallel tasks. This is obviously more work for the programmer than a
system with implicit parallelism (where the system decides automatically which
parts to run in parallel) but may allow higher performance. Mathematica has many
functions supporting explicit parallelism and we will use some of them in the
following examples.

2 Task Parallel

The type of parallel jobs can be task parallel (embarrassingly parallel) and data
parallel. In case of the task parallel, multiple workers work on different parts of
the problem without communication between each others. Therefore, the result
will be independent of the execution order. In the followings we demonstrate this
type of evaluation by two examples.

2.1 Ex. 1 - Infinite Slope Stability via Monte- Carlo Analysis

We are going to compute the safety factor for an infinite slope subjected to given
ground accelaration value occuring over a specified time period [2]. The safety
factor μ, is the ratio of resisting forces to driving forces. A slope will be stable if
the resisting forces exceed the driving forces and the factor of safety is greater
than 1. We will use a simplified model of the infinite slope model. Let φ be the
angle of internal friction (representing the frictional component of soil shear
strength), β be the slope angle in degrees, and 0 ≤ H ≤ 1 is the dimensionless
height of the prheatic surface above the base of the slide mass. The pseudostatic
factor of safety of an infinite slope subjected to seismic acceleration is then,

SeismicsFS
][Cos Cs][Sin

][Tan])[Sin Cs][Cos)2/H1((:_]Cs _,H _, _,[
β+β

φβ−β−
=βϕ (1)

in which Cs is a coefficient of seismic acceleration given in terms of the
gravitational acceleration g. This is a generalization of the static model (Cs = 0).

According to the USGS national earthquake hazard maps, a peak ground
acceleration of 0.12 g has 0.10 probability of being exceeded in 50 years in
Socorro, New Mexico. So we consider the following Mathematica function for
computing the safety factor at a fixed Cs = 0.12 value,

Slope[n_] := Module[{φ, β, H, result, i, s, Cs=0.12}, result={};

 Do[φ = Random[UniformDistribution[{30.°,35.°}]];

 β = Random[UniformDistribution[{20.°,25.°}]];

B. Paláncz et al.
Mathematica Parallel Computing. Some Timing Results on a Intel Nehalem Multicore Processor

 452

 H = Random[LogNormalDistribution[-2.31,1.33]];

 s = SeismicsFS[φ, β,H,Cs];

 If[s ≥ 0, AppendTo[result, s]],{i, n}]; result]

We will censor the offensive negative values by simply removing them. Let us
consider 80 000 trials. The result can be seen in Figure 1. The computation time in
this case is 27.703 sec.

Figure 1

The histogram of the distribution of the safety factor in case Cs = 0.12, employing 80 000 samples

Realising the same scenario in parallel way (having eight threads, Figure 2)

DistributeDefinitions[Slope, SeismicsFS]

n = Table[10000,{8}]

μ = Flatten[ParallelMap[Slope[#] & ,n]

the computaion time is considerably decreased with result obtained in 2.7812 sec.

We have checked the example for the other in parallel evaluation method too,

n = Table[10000,{8}]

DistributeDefinitions[Slope, SeismicsFS, n]

μ = Flatten[WaitAll[Map[ParallelSubmit[Slope[#]]& , n]]]

obtaining nearly the same computation time 2.7812 sec.

The preformance metrics are summarized in Table 1.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 453

Figure 2

Status of the kernels in case of parallel Monte- Carlo simulation with the infinite slope model using
ParallelMap.

Table 1
Performance of different types of the computations of the Monte- Carlo simulation with the infinite

slope model.

Comput. type
Time
(sec.)

Speedup
Efficiency

(%)
Relative

unbalance
Mean

value of μ
Standard
deviation

Non-parallel 27.70 - 12.5 - 1.02153 0.180758

ParallelMap 2.78 7.38 124.6 0.06 1.01886 0.183263

ParallelSubmit 2.78 7.40 124.6 0.07 1.01827 0.183293

2.2 Ex. 2 - Photogrammetric Positioning by Gauss- Jacobi
Algorithm

The relation between the coordinates of a ground point (Xi, Yi, Zi) and the
coordinates of the corresponding point on the photo plain (xi, yi) can be
represented by the following linear transformation (Figure 3),

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
ξ−
η−

0i

0i

0i

i0i

0i

ZZ
YY
XX

Rk
f

y
x

 (2)

B. Paláncz et al.
Mathematica Parallel Computing. Some Timing Results on a Intel Nehalem Multicore Processor

 454

where

- η0, ξ0 are the coordinates of the perspective center on the photo plane;

- f the focal length;

- ki the scaling factor;

- R the rotation matrix;

- X0,Y0, Z0 the coordinates of the perspective center in the ground system.

In general the focal length f is known, and the parameters of the transformation
should be determined on the basis of the coordinates of 3 corresponding plane-
ground points.

The problem with this representation of the transnformation is, that the scaling
factor is different in the different points, therefore it is reasonable to eliminate it.
Let us express the equations of the transformation for the three different
coordinates,

Figure 3

Photogrammetric 3D resection.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 455

))ZZ(R)YY(R)XX(R(kx 0i3,10i2,10i1,1i0i −+−+−=η−

))ZZ(R)YY(R)XX(R(ky 0i3,20i2,20i1,2i0i −+−+−=ξ− (3)

))ZZ(R)YY(R)XX(R(kf 0i3,30i2,30i1,3i −+−+−=−

Dividing the first and second equation by the third one and rearrange them,
introducing rij= Ri,j we get

)ZZ(r)YY(r)XX(r
)ZZ(r)YY(r)XX(r

fy

)ZZ(r)YY(r)XX(r
)ZZ(r)YY(r)XX(r

fx

0i330i320i31

0i230i220i21
0i

0i330i320i31

0i130i120i11
0i

−+−+−
−+−+−

−=ξ−

−+−+−
−+−+−

−=η−

 (4)

Now, we express the elements of the rotation matrix with the elements of the skew
matrix,

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

0ab
a0c

bc0
S (5)

The rotation matrix (where I3 is a 3x3 identity matrix) is

)SI()SI(R 3
1

3 +−= − (6)

As a result, R becomes

R =

222

222

222222

222222

222

222

222222222

222

cba1
cba1

cba1

)bca(2

cba1

)acb(2
cba1

)bca(2

cba1
cba1

cba1

)cab(2
cba1

)acb(2

cba1
c2ab2

cba1
cba1

+++

+−−

+++

+

+++

+−
+++

−
−

+++

−+−

+++

+
+++

+

+++

−

+++

−−+

 (7)

In our case given coordinate values of the ground points and image coordinates
are in Table2 and f = 153000. It means, we have 12 equations, but only 8
unknown variables (a, b, c, X0, Y0, Z0, η0, ξ0). Consequently, our system is
overdetermined.

Let us employ the Gauss- Jacobi combinatorial algorithm. We have 6
corresponding points and every 4 points represent 4 ×2 equations , see Eqs. (4).
The number of the combinations is 15, so we should solve 15 subsets of eight
equations.

B. Paláncz et al.
Mathematica Parallel Computing. Some Timing Results on a Intel Nehalem Multicore Processor

 456

Table 2
Coordinate values of the ground points and image coordinates [3]

Xi Yi Zi xi yi

-460 -920 -153 18996.171 -64147.679

460 -920 0 113471.749 -73694.266

-460 0 0 16504.609 16331.649

460 0 153 128830.826 21085.172

-460 920 -153 13716.588 106386.802

460 920 0 120577.473 128214.823

The solution of the subsets takes 122.85 sec, therefore it is reasonable to employ
parallel computation. Defining all variables involved in the computation as
parallel variables, the parallel computation can be applied straight forward (here
the application of the function Parallelize is recommended).

As a result a considerably shorter running time, 34.54 sec. is obtained (Figure 4).
It can be seen, that only 7 threads were activated and their tasks needed different
running time. Indeed, the solutions have different types and different lenghts.

The performance metrics are summarized in Table 3. The relative unbalance is based on the
7 active threads.

Figure 4

Status of the kernels in case of parallel evaluation of the Gauss- Jacobi algorithm using Parallelize

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 457

Table 3. Performance of computation of the Gauss- Jacobi combinatorial algorithm.

Comput. type
Time
(sec.)

Speedup
Efficiency

(%)
Relative

unbalance

Non-parallel 122.86 - 12.5 -

Parallelize 34.55 5.49 44.45 0.48

3 Data Parallel

Typically in this case data being analysed is too large for one computer (one core).
In these cases each worker operates on part of the data and they may or may not
communicate with each other. As illustration let us consider an example of digital
image processing.

3.1 Ex. 3 - Reducing Colors via Color Approximation

On systems with 24 - bit color displays, truecolor images can display up to 16
million (i.e. 224) colors. On systems with lower screen bit depths, truecolor images
are still displayed reasonably well, using color approximation. Color
approximation is the process by which the software chooses replacement colors in
the event where direct matches cannot be found. One of the methods to carry out
such color approximation is the color quantization [4].

An important term in discussions of image quantization is RGB color cube. The
RGB color cube is a 3D array of all of the colors that are defined for a particular
data type (Figure 5). Quantization involves dividing the RGB color cube into a
number of smaller boxes, and then mapping all colors that fall within each box to
the color value at the center of that box.

If the actual image is big in size, one may divide the image into parts, and this
quantization process can be carried out parallel on these image segments.

Let us consider an airborne digital photo of Boston (Figure 6), a 4481 x 2881 size
image, with 12 909 761 pixels.

Let us divide the RGB cube into 10 subcubes, and carry out the color reduction by
color quantization using ColorQuantize[pBoston,10]. The computation time
obtained is 23.187 sec.

Now let us divide the picture into eight parts (4481/4 = 1120 and 2881/2 = 1140)

pP = ImagePartition[pBoston, {1120,1440}]

see, Figure 7.

B. Paláncz et al.
Mathematica Parallel Computing. Some Timing Results on a Intel Nehalem Multicore Processor

 458

Figure 5

 RGB color cube.

Figure 6

The considered airborne digital photo of Boston.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 459

Figure 7

Partitioned digital photo of Boston

This computation required is 4.813 sec.

Now, computing the color approximation of each subimage simultaneously, in
parallel way, using ParallelSubmit takes only 6.64 sec. (Figure 8)

DistributeDefinitions[ColorQuantize, pP]

pS = WaitAll [Map [ParallelSubmit [ColorQuantize [#,10]] & ,pP]]

Putting the parts together takes 0.11 sec,

pR = ImageAssemble[Partition[pS,4]]

Table 4
Performance of the computation of color quantization.

Comput. type
Time
(sec.)

Speedup
Efficiency

(%)
Relative

unbalance

Non-parallel 23.19 - 12.5 -

Parallelize 6.64 7.01 43.66 0.26

B. Paláncz et al.
Mathematica Parallel Computing. Some Timing Results on a Intel Nehalem Multicore Processor

 460

Figure 8

Status of the kernels in case of parallel evaluation of color quantization using ParallelSubmit.

The actual net win in running time becomes 006.2
11.064.681.4

19.23
=

++
.

The performance metrics of this example are given in Table 4.

Conclusions

In this case study we have illustrated how Mathematica can manage time
consuming algorithms parallel on a multicore machine. The considered three
examples were analysed by the efficiency of the computation and the net reduction
of the execution time.

Acknowledgement

This research has been supported by Hungarian National Scientific Research
Foundation, Grant No. OTKA T69055.

References

[1] Intel Nehalem (microarchitecture): Performance and power improvements-
Wikipedia, http://en.wikipedia.org/wiki/Intel_Nehalem_(microarchitecture)

[2] Haneberg W. C.: Computational Geosciences with Mathematica, Springer
Berlin, 2004

[3] Awange J. L. and E. W. Grafarend: Solving Algebraic Computational
Problems in Geodesy and Geoinformatics, Springer, Berlin, 2005

[4] Siddharth.S.:Parallel-computing-using-MATLAB,-http://sc08.sc-
education.org/conference/engineering/mon/parallelmatlab2/ParallelMATL
AB.pdf

