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Abstract: Mining frequent itemsets in databases is an important and widely studied 
problem in data mining research. The problem of mining frequent itemsets is usually solved 
by constructing candidates of itemsets, and identifying those itemsets that meet the 
requirement of frequent itemsets. This paper proposes a novel algorithm based on BitTable 
(or bitmap) representation of the data. Data - related to frequent itemsets - are stored in 
spare matrices. Simple matrix and vector multiplications are used to calculate the support 
of the potential n+1 itemsets. The main benefit of this approach is that only bitmaps of the 
frequent itemsets are generated. The concept is simple and easily interpretable and it 
supports a compact and effective implementation (in MATLAB).  An application example 
related to the BMS-WebView-1 benchmark data is presented to illustrate the applicability 
of the proposed algorithm.  

Keywords: frequent itemsets, BitTable  

1 Introduction 

Mining frequent itemsets is an important and widely studied problem in the field 
of data mining research [1]. When the minimum support is small, and hence the 
number of frequent itemsets is very large, most algorithms either run out of 
memory or run over of allowed disk space due to the huge number of frequent 
itemsets. Most of early researches focused on the reduction of the amount of 
candidate itemsets and the time required to database-scanning. A lot of these 
algorithms adopt an Apriori-like candidate itemsets generation and support count 
approach which is a time-demanding process and needs a huge memory capacity.   

Among the wide range of the developed algorithms this paper focuses on bitmap 
based solutions, like MAFIA [2] and BitTableFI [3], where BitTable is used for 
compressing the database horizontally and vertically for quick candidate itemsets 
generation and support count. Experiments with both synthetic and real databases 
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show that BitTableFI outperforms Apriori and CBAR which uses ClusterTable for 
quick support count. Wei Song at al. has developed this concept resulting the 
Index-BitTableFI algorithm [4]. 

In these algorithms the task of mining frequent itemsets is still solved by 
constructing candidate itemsets, then, identifying the itemsets that meet the 
frequent itemset requirement. The motivation of this paper is to develop an 
extremely simple and easily implementable algorithm based on the bitmap-like 
representation of the frequent itemsets. The key idea is simple: store the data 
related to a given itemset in a binary vector. Hence, data related to frequent 
itemsets is stored in spare matrices, simple matrix and vector multiplications are 
used to calculate the support of the potential k+1 itemsets. The main benefit of 
this approach is that only bitmaps of the frequent itemsets are generated based on 
the elementwise products of the binary vectors corresponding the building  
k-1 frequent itemsets. Furthermore, when fuzzy membership values are stored in 
the bitmap-like matrices, the algorithm can directly be used to generate fuzzy 
frequent itemsets. The concept is simple and easily interpretable, so it supports the 
compact and effective implementation of the algorithm (in MATLAB).   

The paper is organized as follows. In Section 2 we are going to briefly revisit the 
problem definition of frequent itemset mining by basic definitions and show the 
details of the proposed algorithm. In Section 3, an application for web usage 
mining will be presented. Finally, the results and the advantages of the proposed 
method will be summarized.   

2 The Proposed Algorithm  

2.1 Definitions – Matrix Representation  

The problem of finding frequent itemsets can be formally stated by the following 
way: let },,,{ 21 miiiI …=  be a set of distinct literals, called items.  
Let },,,{ 21 NTTTD …=  be a set of transactions, where each transaction T is a set 
of items such that IT ⊆ . A transaction T is said to support an itemset X if it 
contains all items of X, i.e., TX ⊆ . The support of an itemset X is the number (or 
percentage) of transactions that support X. An itemset is frequent if its support is 
greater or equal to a user-specified minimum support threshold, denoted MinSup. 
Frequent itemsets are also known as large itemsets. An itemset X is called k-
itemset if it contains k items from I. 
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Items 

Tid        items 

1T       a,   c,   d 

2T       b,   c,   e 

3T       a,   b,   c,   e 

4T       b,   e  

 

                          Items 

        Tid     1(a)  2(b)  3(c)  4(d)  5(e) 

        1T       1       0       1       1      0 

        2T       0       1       1      0       1   

        3T       1       1       1      0       1 

        4T      0       1       0      0       1      

       Sum    2       3      3      1       3       

Table 1 
Illustrative example for a transactional dataset and its binary incidence matrix representation 

An illustrative example for D transactional database is shown in Table 1(a). The 
transactional database can be transformed into a bitmap-like matrix representation, 
where if an item i=1,…,m appears in transaction jT  j=1,…,N,  the bit i of the j -th 

row of the binary incidence matrix will be marked as one (as seen in Table 1).  

For mining association rules, non-binary attributes have to be mapped to binary 
attributes. The straightforward mapping method is to transform the metric 
attributes to k ordinal attributes by building categories (e.g., an attribute income 
might be transformed into a ordinal attribute with the three categories: “low”, 
“medium” and “high”). Then, in a second step, each categorical attribute with 
categories k is represented by k binary dummy attributes which correspond to the 
items used for mining. An example application using questionnaire data can be 
found in [5]. 

As the support of an itemset is a percentage of the total number of transactions, the 
sum of the columns of this 0

nN×B matrix represent the support of the nj ,,1 …=  

items. (see the bottom of Table 1(b))  Hence, if 0
jb represents the j-th column of 
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0
nN×B which is related to the occurrence of the ji  -th item, then the support of the 

ji  item can be easily calculated as   

sup X = i j( )= b j
0( )T b j

0 /N  (1) 

(in this case the result is given in percentage). Similarly, the support of an 
{ }jiji iiX ,, =  itemset can be easily calculated by a simple vector product of the 

two related bitvectors, since when both ii  and ji  items appear in a given 
transaction the product of the two related bits can represent the AND connection 
of the two items: 

{ }( ) ( ) NiiX j
T

ijiji /,sup 00
, bb==  (2) 

The matrix representation allows the effective calculation of all of the itemsets:  

S2 = B0( )T B0  (3) 

where the i,j-th element of the 2S matrix represents the support of the 
Xi, j = ii ,i j{ } 2-itemset. Of course, only the upper triangular elements of this, this 

symmetrical matrix has to be checked, whether the Xi, j = ii ,i j{ } 2-itemsets are 
frequent or not.  

Fuzzy membership values can also be stored in the same matrix structure, where 
the columns represent the items and the rows the transactions (see Table 2). 
Hence, beside the analysis of classical transactional datasets, the analysis of fuzzy 
data is also considered in this paper. In this case let },,,{ 21 NtttD …=  be a 
transformed fuzzy dataset of N tuples (data points) with a set of variables 

},,,{ 21 nzzzΖ …=  and let jic ,  be an arbitrary fuzzy interval (fuzzy set) associated 

with attribute iz  in Z. Use the notation jii cz ,:  for an attribute-fuzzy interval 

pair, or simply fuzzy item, (i.e.: youngAge : ). For fuzzy itemsets, we use 
expressions like CZ :  to denote an ordered set Ζ⊆Z  of attributes and a 
corresponding set C of some fuzzy intervals, one per attribute, i.e. CZ : .   
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Table 2 
Example database containing membership values 

 Items 

 medium : Balance  high :Credit  high : Income  

1T  0.5 0.6 0.4 

2T  0.8 0.9 0.4 

3T  0.7 0.8 0.7 

4T  0.9 0.8 0.3 

5T  0.9 0.7 0.6 

Equation (3) can also be used in case the 0
nN×B matrix stores fuzzy membership 

values. A fuzzy support reflects how the record of the dataset supports the itemset. 
In the literature, the fuzzy support value has been defined in different ways. Some 
of the researchers suggest the minimum operator as in fuzzy intersection, others 
prefer the product operator. They can be defined formally as follows: value )( ik zT  

for attribute iz , then the fuzzy support of 2: CZ  with respect to D is defined as 

FS(Z :C) =
Tk (zi)zi :ci, j ∈ Z :C∏k=1

N∑

N
 (4)  

The following example illustrates the calculation of the fuzzy support value. Let 
 ]high : Income medium : Balance[: ∪=AX  be a fuzzy itemset, the dataset 

shown in Table 2. The fuzzy support of AX :  is given by: 

FS (X : A) =
0.5 ⋅ 0.4 + 0.8 ⋅ 0.4 + 0.7 ⋅ 0.7+ 0.9 ⋅ 0.3+ 0.9 ⋅ 0.6

5
= 0.364  (5) 

An itemset CZ :  is called frequent if its fuzzy support value is higher than or 
equal to a user-defined minimum support threshold σ .  

2.2 Mining Frequent Itemsets Based on Bitmap-like 
Representation 

2.2.1 Apriori Algorithm for Mining Frequent Itemsets  

The best-known and most commonly applied frequent pattern mining algorithm 
Apriori was developed by Agrawal et al. [6]. The name is based on the fact that 
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the algorithm uses prior knowledge of the already determined frequent itemsets.  
It is an iterative, breadth-first search algorithm, based on generating stepwise 
longer candidate itemsets, and clever pruning of non-frequent itemsets. Pruning 
possesses the advantage of the so-called apriori (or upward closure) property of 
frequent itemsets: all subsets of a frequent itemset must also be frequent. Each 
candidate generation step is followed by a counting step where the supports of 
candidates are checked and non-frequent ones deleted. 

 

Given a user-specified MinSup, Apriori passes multiple times over the database to 
find all frequent itemsets. In the first pass, Apriori scans the transaction database 
to count the support of each item and identify the frequent 1-itemsets marked as 

1L . In a subsequent k-th pass, Apriori establishes a candidate set of frequent k-
itemsets (which are itemsets of length k) marked as Ck from 1−kL . Two arbitrary 

1−kL  join each other, when their first k-1 items are identical. Then, the downward 
closure property is applied to reduce the number of candidates. This property 
refers to the fact that any subset of a frequent itemset must be frequent. Therefore, 
the process deletes all the k-itemsets whose subsets with length k - 1 are not 
frequent. Next, the algorithm scans the entire transaction database to check 
whether each candidate k-itemset is frequent.  

Generation and counting alternate, until at some step all generated candidates turn 
out to be non-frequent. A high-level pseudocode of the algorithm used for mining 
fuzzy frequent itemsets based on the apriori principle is given in Table 3.   

Table 3 
Algorithm: Mining Frequent Itemsets (minimum support σ , dataset D) 

 

In case of mining fuzzy frequent itemsets the subroutines are outlined as follows: 

Transform(D): Generates a fuzzy database DF from the original dataset D. At the 
same time the complete set of candidate items C1 is found. 

k = 1 
(Ck;DF ) = Transform(D) 
Fk = Count(Ck , DF, σ ) 

while |Ck| ≠  0 do 
inc(k) 
Ck = Generate(Fk-1) 
Ck = Prune(Ck) 
Fk = Count(Ck , DF, σ ) 

F = F ∪ Fk 
end 
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Count(Ck , DF, σ ): In this subroutine the fuzzy database is scanned and the fuzzy 
support of candidates in Ck is counted. If this support is not less than minimum 
support σ  for a given itemset, we put it into the set of frequent itemsets Fk. 

Generate(Fk-1): Generates candidate itemsets Ck from frequent itemsets Fk-1, 
discovered in the previous iteration k-1. For example, if 

{ }high : Income ,high : Balance1 =F then { }high : Incomehigh : Balance2 ∪=C  

Prune(Ck): During the prune step, the itemset will be pruned if one of its subsets 
does not exist in the set of frequent itemsets F. 

2.2.2 The Proposed Algorithm for Mining Frequent Itemsets  

The proposed algorithm has similar philosophy as the Apriori TID [7], which is 
does not revisit the original table of data, BN×n

0 , for computing the supports larger 
itemsets, but transforms the table as it goes along with the generation of the k-
itemsets, BN1×n

1
1
 … BNk ×n

k
k
  Nk < Nk−1 <K < N .   

BN1×n
1

1
 represents the data related to the 1-frequent itemsets. This table is 

generated from BN×n
0 , by erasing the columns related to the non-frequent items, to 

reduce the size of a Bittable and improve the performance of the generation 
process, because all non-frequent 1-itemsets are not useful for further analysis. 
The rows of BNk ×n

k
k
 which do not contain frequent itemsets (the sum of the row is 

zero) are also deleted from the table. This concept is taken from the Apriori TID 
algorithm based on using new data structure called counting_base to store the 
transactions which can support the actual list of candidates. 

If a column remains, the index of its original position is written into matrix that 
stores the indexes (“pointers”) of the element of the itemsets, LN1×1

1 .  

Data related to frequent itemsets are stored in spare matrices. Simple matrix and 
vector multiplications are used to calculate the support of the potential k+1 
itemsets:  

Sk = Bk−1( )T Bk−1  (6) 

where the i,j-th element of the Sk  matrix represent the support of the 
Xi, j = Li

k−1,L j
k−1{ } itemset. Of course, only the upper triangular elements of this 

symmetrical matrix has to be checked, whether the itemsets are frequent or not.  
The main benefit of this approach is that only the BitTables of the frequent 
itemsets are generated, by forming the columns of the BNk ×n

k
k
 as the element wise 

products of the columns of the BNk−1×n
k−1

k−1
, bi

k , b j
k .  
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The concept is simple and easily interpretable that supports the compact and 
effective implementation (see the appendix for the MATLAB code). 

The above presented approach is related to the lazy version of the algorithm. The 
performance of the support count can be significantly decreased when only the 
relevant blocks of the BNk−1×n

k−1
k−1

 matrix are multiplied by their transpose. When 

LNk−1×k−1
k−1  matrices related to the indexes of the k-1-itemsets are ordered it is easy 

to follow the heuristics of the apriori algorithm, as only the itemsets 1−kL  join 
each other, when their first k-1 items are identical (the set of these itemsets form 
the blocks of the BNk−1×n

k−1
k−1

 matrix). 

3 Application Example 

The main benefit of the proposed algorithm is that it can be effectively 
implemented in tools tailored to perform matrix manipulations. In the appendix of 
this paper the full implementation of the algorithm is shown as a MATLAB 
function. This code with 15 lines is optimized to give a reasonable calculation 
time. Hence, the matrix multiplications are performed in block-wise manner and 
the unnecessary transactions (rows) are removed from the BNk ×n

k
k
matrices.   

The proposed algorithm and MATLAB code has been applied to the  
BMS-WebView-1 benchmark problem, [8] where data taken from the 
www.gazelle.com web portal is analyzed. This database contains 59,602 
transactions and 497 items (webpages). The maximal size of a basket is 267, while 
its average size is 2.5 (length of the average visit of the portal).  

The calculation time is shown in Figure 1 is quite reasonable, considering the 
MATLAB framework is not optimized to calculation speed. The results agree with 
the results of other applications [8] (see Figure 2 for the number of the mined 
itemsets). It is interesting to see Figure 3 that nicely illustrates the key element of 
the proposed approach, the bitmap of the 2nd itemset of the studied benchmark 
data.  



Magyar Kutatók 10. Nemzetközi Szimpóziuma 
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 477 

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

support %

tim
e 

[s
ec

]

 
Figure 1 

Time required to mine frequent itemsets with a given support 
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Figure 2 
Number of frequent itemsets related to different support treshold (MinSup).  

As can be seen, at smaller support values the number of itemsets can be really huge.  
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Figure 3 

Data related to frequent itemsets are stored in “Bitmaps” like shown in this figure, where the columns 
represent the itemsets and the dots in the rows represen the given itemset is in the transaction related to 

the row of the matrix 

Conclusions 

This paper proposed a novel algorithm for mining frequent itemsets. The key idea 
is to store the data related to a given itemset in a binary vector. Hence, data related 
to frequent itemsets are stored in spare matrices and simple matrix and vector 
multiplications are used to calculate the support of the potential k+1 itemsets.  

The main benefit of this approach is that only bitmaps of frequent itemsets are 
generated based on the elementwise products of the binary vectors corresponding 
the building k-1 frequent itemsets, since bitwise AND operation is greatly faster 
than comparing each item in two frequent itemsets (as at Apriori). Furthermore, 
when fuzzy membership values are stored in the bitmap-like matrices, the 
algorithm can directly be used to generate fuzzy frequent itemsets. The concept is 
simple and easily interpretable, so it supports the compact and effective 
implementation of the algorithm (in MATLAB). The application example related 
to the BMS-WebView-1 benchmark problem demonstarted that applicability of 
the developed compact MATLAB code that can be easily used by medium-sized 
firms having around 100 000 transactions and several tousand items.  
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Appendix: the word’s most compact frequent itemset 
miner in MATLAB  

 
function [items,Ai]=bittable(A, suppp) 
[N,n]=size(A); 
items{1}=find(sum(A,1)>=suppp)'; 
k=1; Ai{1}=A(:,items{1}); 
while ~isempty(items{k}) 
  k=k+1; Ai{k}=[]; items{k}=[];  
  index=[0; find(sum(abs(diff((items{k-1}(:,1:end-1)))),2)~=0); size(items{k-1},1)]; 
    for i=1:length(index)-1 
        v=[index(i)+1:index(i+1)];  m=Ai{k-1}(:,v)'*Ai{k-1}(:,v);  
        m=triu(m,1); [dum1,dum2]=find((m)>suppp); 
        for j=1:length(dum1) 
            items{k}=[items{k}; [items{k-1}(v(dum1(j)),:) items{k-1}(v(dum2(j)),end) ] ]; 
            Ai{k}= [ Ai{k} Ai{k-1}(:,v(dum1(j))).*Ai{k-1}(:,v(dum2(j)))]; 
        end 
    end 
    [items{k},I]=sortrows(items{k}); Ai{k}=Ai{k}(:,I); 
end 
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