
Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 469

Generating (Fuzzy) Frequent Itemsets by a
Bitmap-based Algorithm – the Word’s Most
Compact Frequent Itemset Miner

János Abonyi
Department of Process Engineering, University of Pannonia
POB. 158, H-8200 Veszprém, Hungary
abonyij@fmt.uni-pannon.hu

Abstract: Mining frequent itemsets in databases is an important and widely studied
problem in data mining research. The problem of mining frequent itemsets is usually solved
by constructing candidates of itemsets, and identifying those itemsets that meet the
requirement of frequent itemsets. This paper proposes a novel algorithm based on BitTable
(or bitmap) representation of the data. Data - related to frequent itemsets - are stored in
spare matrices. Simple matrix and vector multiplications are used to calculate the support
of the potential n+1 itemsets. The main benefit of this approach is that only bitmaps of the
frequent itemsets are generated. The concept is simple and easily interpretable and it
supports a compact and effective implementation (in MATLAB). An application example
related to the BMS-WebView-1 benchmark data is presented to illustrate the applicability
of the proposed algorithm.

Keywords: frequent itemsets, BitTable

1 Introduction

Mining frequent itemsets is an important and widely studied problem in the field
of data mining research [1]. When the minimum support is small, and hence the
number of frequent itemsets is very large, most algorithms either run out of
memory or run over of allowed disk space due to the huge number of frequent
itemsets. Most of early researches focused on the reduction of the amount of
candidate itemsets and the time required to database-scanning. A lot of these
algorithms adopt an Apriori-like candidate itemsets generation and support count
approach which is a time-demanding process and needs a huge memory capacity.

Among the wide range of the developed algorithms this paper focuses on bitmap
based solutions, like MAFIA [2] and BitTableFI [3], where BitTable is used for
compressing the database horizontally and vertically for quick candidate itemsets
generation and support count. Experiments with both synthetic and real databases

J. Abonyi
Generating (Fuzzy) Frequent Itemsets by a Bitmap-based Algorithm – the Word’s Most Compact
Frequent Itemset Miner

 470

show that BitTableFI outperforms Apriori and CBAR which uses ClusterTable for
quick support count. Wei Song at al. has developed this concept resulting the
Index-BitTableFI algorithm [4].

In these algorithms the task of mining frequent itemsets is still solved by
constructing candidate itemsets, then, identifying the itemsets that meet the
frequent itemset requirement. The motivation of this paper is to develop an
extremely simple and easily implementable algorithm based on the bitmap-like
representation of the frequent itemsets. The key idea is simple: store the data
related to a given itemset in a binary vector. Hence, data related to frequent
itemsets is stored in spare matrices, simple matrix and vector multiplications are
used to calculate the support of the potential k+1 itemsets. The main benefit of
this approach is that only bitmaps of the frequent itemsets are generated based on
the elementwise products of the binary vectors corresponding the building
k-1 frequent itemsets. Furthermore, when fuzzy membership values are stored in
the bitmap-like matrices, the algorithm can directly be used to generate fuzzy
frequent itemsets. The concept is simple and easily interpretable, so it supports the
compact and effective implementation of the algorithm (in MATLAB).

The paper is organized as follows. In Section 2 we are going to briefly revisit the
problem definition of frequent itemset mining by basic definitions and show the
details of the proposed algorithm. In Section 3, an application for web usage
mining will be presented. Finally, the results and the advantages of the proposed
method will be summarized.

2 The Proposed Algorithm

2.1 Definitions – Matrix Representation

The problem of finding frequent itemsets can be formally stated by the following
way: let },,,{ 21 miiiI …= be a set of distinct literals, called items.
Let },,,{ 21 NTTTD …= be a set of transactions, where each transaction T is a set
of items such that IT ⊆ . A transaction T is said to support an itemset X if it
contains all items of X, i.e., TX ⊆ . The support of an itemset X is the number (or
percentage) of transactions that support X. An itemset is frequent if its support is
greater or equal to a user-specified minimum support threshold, denoted MinSup.
Frequent itemsets are also known as large itemsets. An itemset X is called k-
itemset if it contains k items from I.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 471

Items

Tid items

1T a, c, d

2T b, c, e

3T a, b, c, e

4T b, e

 Items

 Tid 1(a) 2(b) 3(c) 4(d) 5(e)

 1T 1 0 1 1 0

 2T 0 1 1 0 1

 3T 1 1 1 0 1

 4T 0 1 0 0 1

 Sum 2 3 3 1 3

Table 1
Illustrative example for a transactional dataset and its binary incidence matrix representation

An illustrative example for D transactional database is shown in Table 1(a). The
transactional database can be transformed into a bitmap-like matrix representation,
where if an item i=1,…,m appears in transaction jT j=1,…,N, the bit i of the j -th

row of the binary incidence matrix will be marked as one (as seen in Table 1).

For mining association rules, non-binary attributes have to be mapped to binary
attributes. The straightforward mapping method is to transform the metric
attributes to k ordinal attributes by building categories (e.g., an attribute income
might be transformed into a ordinal attribute with the three categories: “low”,
“medium” and “high”). Then, in a second step, each categorical attribute with
categories k is represented by k binary dummy attributes which correspond to the
items used for mining. An example application using questionnaire data can be
found in [5].

As the support of an itemset is a percentage of the total number of transactions, the
sum of the columns of this 0

nN×B matrix represent the support of the nj ,,1 …=

items. (see the bottom of Table 1(b)) Hence, if 0
jb represents the j-th column of

J. Abonyi
Generating (Fuzzy) Frequent Itemsets by a Bitmap-based Algorithm – the Word’s Most Compact
Frequent Itemset Miner

 472

0
nN×B which is related to the occurrence of the ji -th item, then the support of the

ji item can be easily calculated as

sup X = i j()= b j
0()T b j

0 /N (1)

(in this case the result is given in percentage). Similarly, the support of an
{ }jiji iiX ,, = itemset can be easily calculated by a simple vector product of the

two related bitvectors, since when both ii and ji items appear in a given
transaction the product of the two related bits can represent the AND connection
of the two items:

{ }() () NiiX j
T

ijiji /,sup 00
, bb== (2)

The matrix representation allows the effective calculation of all of the itemsets:

S2 = B0()T B0 (3)

where the i,j-th element of the 2S matrix represents the support of the
Xi, j = ii ,i j{ } 2-itemset. Of course, only the upper triangular elements of this, this

symmetrical matrix has to be checked, whether the Xi, j = ii ,i j{ } 2-itemsets are
frequent or not.

Fuzzy membership values can also be stored in the same matrix structure, where
the columns represent the items and the rows the transactions (see Table 2).
Hence, beside the analysis of classical transactional datasets, the analysis of fuzzy
data is also considered in this paper. In this case let },,,{ 21 NtttD …= be a
transformed fuzzy dataset of N tuples (data points) with a set of variables

},,,{ 21 nzzzΖ …= and let jic , be an arbitrary fuzzy interval (fuzzy set) associated

with attribute iz in Z. Use the notation jii cz ,: for an attribute-fuzzy interval

pair, or simply fuzzy item, (i.e.: youngAge :). For fuzzy itemsets, we use
expressions like CZ : to denote an ordered set Ζ⊆Z of attributes and a
corresponding set C of some fuzzy intervals, one per attribute, i.e. CZ : .

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 473

Table 2
Example database containing membership values

 Items

 medium : Balance high :Credit high : Income

1T 0.5 0.6 0.4

2T 0.8 0.9 0.4

3T 0.7 0.8 0.7

4T 0.9 0.8 0.3

5T 0.9 0.7 0.6

Equation (3) can also be used in case the 0
nN×B matrix stores fuzzy membership

values. A fuzzy support reflects how the record of the dataset supports the itemset.
In the literature, the fuzzy support value has been defined in different ways. Some
of the researchers suggest the minimum operator as in fuzzy intersection, others
prefer the product operator. They can be defined formally as follows: value)(ik zT

for attribute iz , then the fuzzy support of 2: CZ with respect to D is defined as

FS(Z :C) =
Tk (zi)zi :ci, j ∈ Z :C∏k=1

N∑

N
 (4)

The following example illustrates the calculation of the fuzzy support value. Let
]high : Income medium : Balance[: ∪=AX be a fuzzy itemset, the dataset

shown in Table 2. The fuzzy support of AX : is given by:

FS (X : A) =
0.5 ⋅ 0.4 + 0.8 ⋅ 0.4 + 0.7 ⋅ 0.7+ 0.9 ⋅ 0.3+ 0.9 ⋅ 0.6

5
= 0.364 (5)

An itemset CZ : is called frequent if its fuzzy support value is higher than or
equal to a user-defined minimum support threshold σ .

2.2 Mining Frequent Itemsets Based on Bitmap-like
Representation

2.2.1 Apriori Algorithm for Mining Frequent Itemsets

The best-known and most commonly applied frequent pattern mining algorithm
Apriori was developed by Agrawal et al. [6]. The name is based on the fact that

J. Abonyi
Generating (Fuzzy) Frequent Itemsets by a Bitmap-based Algorithm – the Word’s Most Compact
Frequent Itemset Miner

 474

the algorithm uses prior knowledge of the already determined frequent itemsets.
It is an iterative, breadth-first search algorithm, based on generating stepwise
longer candidate itemsets, and clever pruning of non-frequent itemsets. Pruning
possesses the advantage of the so-called apriori (or upward closure) property of
frequent itemsets: all subsets of a frequent itemset must also be frequent. Each
candidate generation step is followed by a counting step where the supports of
candidates are checked and non-frequent ones deleted.

Given a user-specified MinSup, Apriori passes multiple times over the database to
find all frequent itemsets. In the first pass, Apriori scans the transaction database
to count the support of each item and identify the frequent 1-itemsets marked as

1L . In a subsequent k-th pass, Apriori establishes a candidate set of frequent k-
itemsets (which are itemsets of length k) marked as Ck from 1−kL . Two arbitrary

1−kL join each other, when their first k-1 items are identical. Then, the downward
closure property is applied to reduce the number of candidates. This property
refers to the fact that any subset of a frequent itemset must be frequent. Therefore,
the process deletes all the k-itemsets whose subsets with length k - 1 are not
frequent. Next, the algorithm scans the entire transaction database to check
whether each candidate k-itemset is frequent.

Generation and counting alternate, until at some step all generated candidates turn
out to be non-frequent. A high-level pseudocode of the algorithm used for mining
fuzzy frequent itemsets based on the apriori principle is given in Table 3.

Table 3
Algorithm: Mining Frequent Itemsets (minimum support σ , dataset D)

In case of mining fuzzy frequent itemsets the subroutines are outlined as follows:

Transform(D): Generates a fuzzy database DF from the original dataset D. At the
same time the complete set of candidate items C1 is found.

k = 1
(Ck;DF) = Transform(D)
Fk = Count(Ck , DF, σ)

while |Ck| ≠ 0 do
inc(k)
Ck = Generate(Fk-1)
Ck = Prune(Ck)
Fk = Count(Ck , DF, σ)

F = F ∪ Fk
end

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 475

Count(Ck , DF, σ): In this subroutine the fuzzy database is scanned and the fuzzy
support of candidates in Ck is counted. If this support is not less than minimum
support σ for a given itemset, we put it into the set of frequent itemsets Fk.

Generate(Fk-1): Generates candidate itemsets Ck from frequent itemsets Fk-1,
discovered in the previous iteration k-1. For example, if

{ }high : Income ,high : Balance1 =F then { }high : Incomehigh : Balance2 ∪=C

Prune(Ck): During the prune step, the itemset will be pruned if one of its subsets
does not exist in the set of frequent itemsets F.

2.2.2 The Proposed Algorithm for Mining Frequent Itemsets

The proposed algorithm has similar philosophy as the Apriori TID [7], which is
does not revisit the original table of data, BN×n

0 , for computing the supports larger
itemsets, but transforms the table as it goes along with the generation of the k-
itemsets, BN1×n

1
1
 … BNk ×n

k
k
 Nk < Nk−1 <K < N .

BN1×n
1

1
 represents the data related to the 1-frequent itemsets. This table is

generated from BN×n
0 , by erasing the columns related to the non-frequent items, to

reduce the size of a Bittable and improve the performance of the generation
process, because all non-frequent 1-itemsets are not useful for further analysis.
The rows of BNk ×n

k
k
 which do not contain frequent itemsets (the sum of the row is

zero) are also deleted from the table. This concept is taken from the Apriori TID
algorithm based on using new data structure called counting_base to store the
transactions which can support the actual list of candidates.

If a column remains, the index of its original position is written into matrix that
stores the indexes (“pointers”) of the element of the itemsets, LN1×1

1 .

Data related to frequent itemsets are stored in spare matrices. Simple matrix and
vector multiplications are used to calculate the support of the potential k+1
itemsets:

Sk = Bk−1()T Bk−1 (6)

where the i,j-th element of the Sk matrix represent the support of the
Xi, j = Li

k−1,L j
k−1{ } itemset. Of course, only the upper triangular elements of this

symmetrical matrix has to be checked, whether the itemsets are frequent or not.
The main benefit of this approach is that only the BitTables of the frequent
itemsets are generated, by forming the columns of the BNk ×n

k
k
 as the element wise

products of the columns of the BNk−1×n
k−1

k−1
, bi

k , b j
k .

J. Abonyi
Generating (Fuzzy) Frequent Itemsets by a Bitmap-based Algorithm – the Word’s Most Compact
Frequent Itemset Miner

 476

The concept is simple and easily interpretable that supports the compact and
effective implementation (see the appendix for the MATLAB code).

The above presented approach is related to the lazy version of the algorithm. The
performance of the support count can be significantly decreased when only the
relevant blocks of the BNk−1×n

k−1
k−1

 matrix are multiplied by their transpose. When

LNk−1×k−1
k−1 matrices related to the indexes of the k-1-itemsets are ordered it is easy

to follow the heuristics of the apriori algorithm, as only the itemsets 1−kL join
each other, when their first k-1 items are identical (the set of these itemsets form
the blocks of the BNk−1×n

k−1
k−1

 matrix).

3 Application Example

The main benefit of the proposed algorithm is that it can be effectively
implemented in tools tailored to perform matrix manipulations. In the appendix of
this paper the full implementation of the algorithm is shown as a MATLAB
function. This code with 15 lines is optimized to give a reasonable calculation
time. Hence, the matrix multiplications are performed in block-wise manner and
the unnecessary transactions (rows) are removed from the BNk ×n

k
k
matrices.

The proposed algorithm and MATLAB code has been applied to the
BMS-WebView-1 benchmark problem, [8] where data taken from the
www.gazelle.com web portal is analyzed. This database contains 59,602
transactions and 497 items (webpages). The maximal size of a basket is 267, while
its average size is 2.5 (length of the average visit of the portal).

The calculation time is shown in Figure 1 is quite reasonable, considering the
MATLAB framework is not optimized to calculation speed. The results agree with
the results of other applications [8] (see Figure 2 for the number of the mined
itemsets). It is interesting to see Figure 3 that nicely illustrates the key element of
the proposed approach, the bitmap of the 2nd itemset of the studied benchmark
data.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 477

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

support %

tim
e

[s
ec

]

Figure 1

Time required to mine frequent itemsets with a given support

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9
x 10

4

k

N
k

 0.2
 0.15

0.125

 0.1
0.095

 0.09

0.085

 0.08
0.075

 0.07

0.065
 0.06

Figure 2
Number of frequent itemsets related to different support treshold (MinSup).

As can be seen, at smaller support values the number of itemsets can be really huge.

J. Abonyi
Generating (Fuzzy) Frequent Itemsets by a Bitmap-based Algorithm – the Word’s Most Compact
Frequent Itemset Miner

 478

Figure 3

Data related to frequent itemsets are stored in “Bitmaps” like shown in this figure, where the columns
represent the itemsets and the dots in the rows represen the given itemset is in the transaction related to

the row of the matrix

Conclusions

This paper proposed a novel algorithm for mining frequent itemsets. The key idea
is to store the data related to a given itemset in a binary vector. Hence, data related
to frequent itemsets are stored in spare matrices and simple matrix and vector
multiplications are used to calculate the support of the potential k+1 itemsets.

The main benefit of this approach is that only bitmaps of frequent itemsets are
generated based on the elementwise products of the binary vectors corresponding
the building k-1 frequent itemsets, since bitwise AND operation is greatly faster
than comparing each item in two frequent itemsets (as at Apriori). Furthermore,
when fuzzy membership values are stored in the bitmap-like matrices, the
algorithm can directly be used to generate fuzzy frequent itemsets. The concept is
simple and easily interpretable, so it supports the compact and effective
implementation of the algorithm (in MATLAB). The application example related
to the BMS-WebView-1 benchmark problem demonstarted that applicability of
the developed compact MATLAB code that can be easily used by medium-sized
firms having around 100 000 transactions and several tousand items.

Acknowledgement

The financial support from the TAMOP-4.2.2-08/1/2008-0018 (Livable
environment and healthier people – Bioinnovation and Green Technology research
at the University of Pannonia, MK/2) project is gratefully acknowledged.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 479

Appendix: the word’s most compact frequent itemset
miner in MATLAB

function [items,Ai]=bittable(A, suppp)
[N,n]=size(A);
items{1}=find(sum(A,1)>=suppp)';
k=1; Ai{1}=A(:,items{1});
while ~isempty(items{k})
 k=k+1; Ai{k}=[]; items{k}=[];
 index=[0; find(sum(abs(diff((items{k-1}(:,1:end-1)))),2)~=0); size(items{k-1},1)];
 for i=1:length(index)-1
 v=[index(i)+1:index(i+1)]; m=Ai{k-1}(:,v)'*Ai{k-1}(:,v);
 m=triu(m,1); [dum1,dum2]=find((m)>suppp);
 for j=1:length(dum1)
 items{k}=[items{k}; [items{k-1}(v(dum1(j)),:) items{k-1}(v(dum2(j)),end)]];
 Ai{k}= [Ai{k} Ai{k-1}(:,v(dum1(j))).*Ai{k-1}(:,v(dum2(j)))];
 end
 end
 [items{k},I]=sortrows(items{k}); Ai{k}=Ai{k}(:,I);
end

References

[1] J. Abonyi et al., Adatbányászat – a hatékonyság eszköze. Computerbooks,
2006

[2] D. Burdick, M. Calimlim, J. Gehrke, MAFIA: A Maximal Frequent Itemset
Algorithm for Transactional Databases Department of Computer Science,
Cornell University

[3] J. Dong, M. Han BitTableFI: An efficient mining frequent itemsets
algorithm, Science Direct, 2006

[4] W. Song, B. Yang, Z. Xu, Index-BitTableFI: An improved algorithm for
mining frequent itemsets; Knowledge-based Systems journal homepage:
elsevier.com/locate/knosys, 2008

[5] Hastie et al. (2001)

[6] R. Agrawal, R. Srikant, Fast algorithm for mining association rules in large
databases, in: Proceedings of 1994 International Conference on VLDB, pp.
487–499. 1994

[7] J. Han, M. Kamber, Data Mining Concepts and Techniques, Elsevier, 2001

[8] Z. Zheng, R. Kohavi, L. Mason, Real World Performance of Association
Rule Algorithms; ACM, 2001

