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Abstract: The motion of hydraulic actuators are severly influenced by friction. In this paper 
the slip friction in hydraulic actuators is meassured using a techique that was originally 
deveoled for electrical motor driven mechanical systems (see [1]). The method is based on 
pressure measurement made in constant velocity regimes. The value of the friction force for 
different velocity regimes was calculated using the measured chamber pressures. To 
describe the nonlinear nature of friction, feed-forward and radial basis function type 
neural networks have been applied for friction modeling. Real time experimental results 
are provided to show the applicability of the proposed identification strategy. 

1 Introduction 

Friction identification and modeling is the first step towards efficient friction 
compensation in mechanical control systems. In high precision position control 
systems the friction cannot be omitted during controller design [7]. The nonlinear 
nature of friction could have a negative influence on control characteristics; it can 
generate undesired effects such as limit cycle, steady state error or tracking lag. 

Hydraulic actuators are widely used in many industrial systems such as heavy-
duty manipulators or excavators. The walls and pistons of these actuators are 
lubricated with oil or grace (hydrodynamic lubrication). Tribological experiments 
showed that in the case of lubricated contacts in the low velocity regime the 
friction force decrease with velocity (Stribeck effect). In the high velocity regime 
the friction force increases with velocity (viscous friction). Both static [3] and 
dynamic [4] models were introduced to explain this phenomenon. One of the most 
common one is the exponential Stribeck model: 
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where u denotes the tangential control force, vp denotes the velocity. The 
parameters of the model are: FC > 0 denotes the Coulomb friction coefficient, FS 
> 0 is the static friction coefficient, FV > 0 is the viscous friction coefficient, vS> 0 
is the Stribeck velocity. The friction can be described with switching model, since 
when the velocity is zero the machine does not start moving until the value of the 
control force reaches the level of the static friction. 

To deal with friction in hydraulic actuators both identification and compensation 
algorithms were proposed. The paper [8] describes how the Coulomb and viscous 
friction coefficients, beside other dynamic parameters, can be identified in a 
hydraulically driven excavator using Least Squares and generalized Newton 
methods. A friction identification method was introduced in [3] for a parallel 
hydraulic actuator based on a simplified form of the model (1). With known or 
partially known friction parameters, control algorithms with friction compensation 
terms were introduced. In [2] a Lyapunov-based discontinuous friction 
compensation technique is developed for the position regulation of a hydraulic 
actuator using static friction model. In [6] the dynamic LuGre friction model was 
applied as friction compensator term in a hydraulic robot. Neural networks are 
also widely used to model the friction in hydraulic actuators. In [9] neural network 
based strategy was proposed for friction compensation. In [10] dynamic neural 
neworks were applied for fault detection in hydraulically actuted rolling mills. 

The rest of the paper is organized as follows: Section 2 presents the dynamic 
model of the hydraulic actuator that was used for identification. Section 3 details 
the characteristics and the parameters of the actuator and its control system using 
which the friction identification was performed. Section 4 presents the proposed 
friction measurement procedure, the neural network based identification method 
and the experimental results of the identification. Finally, Section 5 sums up the 
conclusions of this study. 

2 Nonlinear Model of the Actuator 

A schematic of a servo-valve controlled hydraulic actuator is shown in Figure 1. 
The mathematical model that relates the control input u to the output variable (the 
actuator position px ) depends on the dynamics of the valve spool, the nonlinear 

flows through the valve control ports, the deformation and compressibility flows, 
as well as the Newtonian mechanics of the piston motion. 
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Figure 1 
Schematic of hydraulic actuator for mathematical modeling 

For a two-stage flapper-nozzle servo-valve, the relationship between the input 
current of the torque motor and the position of the valve spool is nonlinear. 
However, in the design of hydraulic servo-systems, detailed analysis of the non-
ideal valve characteristics is generally not required. For control system design the 
servo-valve spool dynamics are often approximated using linear transfer function 
as model that captures the main characteristics of the valve dynamics in the low 
frequency range. Here, a second-order model is used to approximate the dynamics 
of the servo-valve spool position. A second order lag representation is generally 
adequate for the position servos since the servo-valve frequency response is well 
approximated to the point where the phase lag of the real valve is °−90 . The 
relationship position of the valve spool vx , and the current u, applied to the torque 
motor is:  
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where vk  is the valve spool position gain and parameters vω  and vζ  are the 
natural frequency and the damping ratio that best represents the servo-valve 
magnitude and phase characteristics in the low frequency range. The values of this 
second-order model parameters can easily be estimated from valve frequency 
response curves given in manufacturer’s catalogs. 

For a valve with a critically-lapped spool having matched and symmetrical 
orifices, control flows 1Q  and 2Q  follows the turbulent orifice equation. The 
nonlinear governing equation can be written in the following compact form: 
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In equations (3) and (4), 
oil

vv CK
ρ
2

=  is the valve flow gain, which depends on 

the orifice coefficient of discharge vC  and the density oilρ  of the hydraulic fluid. 
Parameter ω  is the width of the rectangular port cut into the valve bushing 
through which the fluid flows. The supply and tank pressures are denoted by sP  
and rP , respectively, while variables 1P  and 2P  refer to the hydraulic pressures in 
each of the actuator cylinders. 

The continuity equations for compressible fluid volumes describe the time rate of 
change of the pressure in each actuator chamber. The continuity equation 
considers both the deformation and the compressibility flows and can be written 
for each cylinder half as: 
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In equations (5) and (6), A is the annulus areas of the piston; parameter hβ  
denotes the effective bulk modulus of the hydraulic fluid. The volumes of oil 
contained in the connecting lines between the servo-valve and actuator are given 
by 1V  and 2V . The length of the actuator stroke is denoted by L. 

In order to complete the mathematical model of the hydraulic servo-actuator, the 
Newtonian mechanics governing the motion of the actuator are now considered. 
By carrying out a force balance on the piston, it is found that the motion of the 
actuator can be described by the following equation: 

fLapp FFFxdxm −−=+   (7) 

In (7) m is the combined mass of the piston, actuator rods and load, and parameter 
d is the equivalent viscous damping coefficient, which describes the combined 
effect of the viscous friction between the piston and the cylinder walls and the 
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damping load. )( 21 PPAFa −=  is the force generated by the actuator, while force 

LF  refers to the external load disturbance. The force acting between the piston 
and the cylinder walls due to friction is denoted by fF . 

The nonlinear model of the entire hydraulic actuator in state space can be written 
based on equations (2) to (7). 
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The nonlinear state equations (8) are valid for both extending and retracting 
strokes and the states pv  and vv  refer to the velocities of the piston and the valve 

spool. The output variable for position control is px  and the two system inputs are 

the control valve command signal u, and the total disturbing force fLd FFF += . 

3 The Experimental Setup 

The experimental setup’s schematic is shown in Figure 2. The entire system is 
powered by a motor driven hydraulic pump, which offers continuous and stable 
high-pressure hydraulic fluid (up to 18.27MPa, i.e. 2650psi) to the actuator. 

The actuator is a double-rod cylinder with the parameters enumerated in Table 1. 
Since the actuator is symmetric and can actually move in either direction, the 
modelings of both chambers are identical. The two chambers are thus noted as 
chamber 1 and chamber 2. The actuator is connected to and controlled by a Moog 
D765 servo-valve (see Figure 2). This servo-valve receives control signals from a 
PC equipped with a DAS-16 data acquisition board and a Metrabyte M5312 
encoder card. When operated at 20.7 MPa (3000psi), Moog D765 valve can 
supply the actuator with hydraulic fluid at a rate of 34L/min. During the 
experiments the operating pressure is set to approximately 13.8MPa (2000psi). 
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All the control strategies and experimental algorithms are implemented on a PC 
with an Intel Pentium III processor. The displacement of the actuator can be 
measured using Metrabyte M5312 quadrature incremental encoder card. With its 
rotary optical encoder, M5312 reaches a position measurement resolution of 
0.03mm per increment. Other necessary system states are measured by transducers 
mounted on the hydraulic circuit and transmitted to the DAS-16 board; meanwhile 
the DAS-16 board also transmits control signals from the PC to the Moog D765 
valve. 

Table 1 
List of nominal system parameters under normal operation 

Supply pressure sP  MPa17≤  

Tank pressure RP  MPa25.0<  

Mass of piston, rods and load m  12.3 Kg 
Viscous damping coefficient d  mN sec/250 ⋅  

Piston annulus area A  263.6 cm  

Actuator stroke L  cm96.6  

Line volumes 
21, VV  37.88 cm  

Hydraulic density oilρ  3/847 mkg  

Fluid bulk modulus hβ  MPa689  

Servo-valve discharge coefficient vC  6.0  

Servo-valve flow gain vK  kgm /1092.2 2/32−×  

Maximum valve spool displacement vmx  mm279.0±  

Servo-valve orifice area gradient ω  mmmm /75.20 2  

Servo-valve spool position gain vk  Vmm /0279.0  

Servo-valve natural frequency vω  Hz175  

Servo-valve damping ratio vς  365.0 cm  

4 Friction Measurement 

The friction depends on velocity; hence it should be measured for different 
constant velocity values. In the other hand the frictional parameters may differ for 
positive and negative velocity domains, the measurement should be performed in 
both velocity domains separately. 
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According to (7), the friction force is proportional with the actuator force if the 
velocity is kept constant and there is no external load on the actuator: 

)(vFF fa =                    (9) 

Note that the viscous coefficient in (7) is incorporated into the friction force. 

The actuator force is given by: 

)( 21 PPAFa −=   (10) 

 
Figure 2 

Hydraulic test rig with its interfacing 

The measurement algorithm can be summarized as follows: 

- Stabilize the velocity to vi. 

- After the transients, set the average of the velocity and the pressures in the 
chambers over a given time period to get rid of measurement noise. 

- Calculate the friction force using (9), (10). 

- Save the measurement data (vi, Ffi). 

- Repeat the sequence for the next velocity vi+1. 
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Figure 3 

Control input and the actuator velocity during identification 

To implement the algorithm, a square control signal (u) was applied for the 
actuator for 150 seconds. The amplitude of the control signal was increased with a 
0.05 V step in every period, see Figure 3. 

In Figure 4 and Figure 5 one measurement period can be seen constant velocity 
regimes and constant actuator force regimes are shown for both positive and 
negative domains. To get rid of measurement noise the pressure signals were 
filtered. The difference between the filtered and unfiltered signals can be seen in 
the Figure 5. The parts of the signals based on which the measurement point was 
determined by average calculation are marked with red on the figures. 

 
Figure 4 

Velocity domains to capture a measurement point 
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Figure 5 

Friction force domains to capture a measurement point (unfiltered and filtered) 

5 Neural Network-based Identification 

Neural network based identification methods are frequently used for nonlinear 
curve fitting and function approximation problems. Neural networks are capable 
for precise approximation but this type of identification requires a more complex 
computational structure. 

For the approximation two types of neural networks are proposed: feed-forward 
network and Radial Basis Function network. The inputs of the neural networks are 
the velocity of the actuator, the training set is given by the measurement points. 

The feed forward network was created with the help of the ‘newff’ MATLAB 
function. This network has two layers; the first one contains 10 neurons, while the 
second output layer 1 neuron. For learning, the Levenberg – Marquadt training 
method and the Mean Square Error performance goal was applied. The curve 
approximation in the case of the feed-forward network is shown in Figure 7a. 

The fitting error is given by: 
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where )(vFfNN  is the neural network output vector. 
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In the case of the feed-forward network the value of the error was found 
as: 0787.3=E . 

The Radial Basis Function network was created with the help of ‘newrb’ 
MATLAB function with 50 neurons in the hidden layer. According to (11) the 
fitting error was determined (see Figure 6d) and its value was found as 

4838.2=E . The approximation of the friction curve can be seen in Figure 6c. 

a) Feed-forward backpropagation network

c) Radial basis network

b) Fitting error

d) Fitting error  
Figure 6 

Neural network based identification 

Conclusions 

A friction measurement and identification algorithm was proposed for hydraulic 
actuators. The friction measurement method is based on chamber pressure and 
measurement and it explores that the complex nonlinear mathematical model of 
the hydraulic actuator reduces to a simple form if the velocity of the piston is 
constant. Neural network models were applied to approximate the measured 
friction characteristic. Experimental results shows that the proposed measurement 
and identification method captures precisely the nonlinear nature of friction hence 
it can effectively be applied for friction modeling and compensation. 

Acknowledgement 

The authors would like to thank Prof. Nariman Sepehri, University of Manitoba, 
Winnipeg for allowing the authors to perform the friction measurements in his 
laboratory, and for his usfull comments and remarks. 



Magyar Kutatók 10. Nemzetközi Szimpóziuma 
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 491 

The first author research was supported by the János Bolyai Research Scholarship 
of the Hungarian Academy of Sciences and by the Hungarian National Research 
program under grant No. OTKA K 71762. 

References 

[1] Lőrinc Márton, Béla Lantos, Friction and backlash measurement and 
identification method for robotic arms IEEE International Conference on 
Advanced Robotics, München, Germany, June 22 -26, 2009 

[2] P. Sekhavat, Q. Wu and N. Sepehri, Lyapunov-based Friction 
Compensation for Accurate Positioning of a Hydraulic Actuator, in 
Proceeding of the 2004 American Control Conference Boston, 
Massachusetts, June 30 - July 2, 2004 

[3] B. Armstrong-Helouvry, Control of Machines with Friction, Kluver 
Academic Press, Boston, 1991 

[4] Carlos Canudas de Wit, H. Ollson, K. J. Astrom and P. Lischinsky, A new 
model for control of systems with friction, IEEE Trans. on Automatic 
Control, Vol. 40, No. 3, 1995, pp. 419–425 

[5] Zakarya Zyada and Toshio Fukuda, Identification and Modeling of Friction 
Forces at a Hydraulic Parallel Link Manipulator Joints, Proc. of 40th SICE 
Annual Conference, Nagoya, July 25-27, 2001 

[6] P. Lischinsky, C. Canudas de Wit and G. Morel, Friction compensation of a 
Schilling Hydraulic Manipulator, in Proc. of 1997 IEEE International 
Conference on Control Applications, Hartford, CT, October 5-7, 1997 

[7] Adrian Bonchis, Peter I. Corke and David C. Rye, Experimental Evaluation 
of Position Control Methods for Hydraulic Systems, IEEE Transactions on 
Control Systems Technology, Vol. 10, No. 6, November 2002, pp. 876-882 

[8] Y. H. Zweiri, L. D. Seneviratne and K. Althoefer, Identification Methods 
for Excavator Arm Parameters, in Proc. of SICE Annual Conference in 
Sapporo, August 4-6, 2004 

[9] S. B. Choi, C. C. Cheong, J. M. Jung and Y. T. Choi Position control of an 
ER Valve-Cylinder System Via Neural Network Ccontroller, Mechatronics 
Vol. 7, No. 1, 1997, pp. 37-52 

[10] Teodor Marcu, Birgit Koppen-Seligerb,Reinhard Stucher, Design of fault 
detection for a hydraulic looper using dynamic neural networks, Control 
Engineering Practice 16, 2008, pp. 192–213 


