
Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 559

Out-of Core Processing in Preparation Phase of
Data Mining Tasks

Tamás Schrádi, Sándor Juhász
Budapest University of Technology and Economics, Hungary
schraditamas@aut.bme.hu, sanyo@aut.bme.hu

Abstract: This paper compares out-of-core approaches used in data pre-processing phase
of data mining task dealing with vast datasets. Due to its high cardinality the dataset
exceeds the limits of straightforward processing methods taking advantage of the main
memory only. To demonstrate the problem of limited memory and high cardinality we
present the weaknesses of an eager method. To keep the memory and the run time
manageable we introduce and analyse two out-of-core algorithms: Periodic Partial Result
Merging and a K-way Merge based method. Beside the core version of the algorithms
above, optimalized versions are suggested to meet the performance requirements. Using
these versions the processing of the dataset is relatively fast, fault-tolerant and the memory
usage remains under complete control even on an average PC, which is unachievable by
eager approaches.

Keywords: out-of-core algorithms, Periodic Partial Result Merging, k-way merge,
performance analysis, eager method, weblog mining

1 Introduction and Motivation

The aim of data mining related tasks is knowledge discovery, which is revealing
structure or rule extraction from large unknown dataset. Globally a lot of data are
stored in different databases or on different servers in a raw form. During
everyday workflow it is easier to store the data at a lower abstraction level and to
transform it on demand to a higher abstraction level during an analysis. Regarding
the different phases of data mining task this transformation, the data preparation
step, can cover a high percentage of the whole process time. Thus this step is a key
point in speeding-up the data mining process.

Log analysis is a frequently applied technique when trying to derive useful
information from web traffic. Logs store elementary data record containing
information about various facts (e.g. user identifiers or the timestamp of a
request). From these logs the activity of various users can separated and identified
with cookie-based techniques [1], [2]. After identification user behaviour profiles
can be created based on the information belonging to each specific user. Usually it

T. Schrádi et al.
Out-of Core Processing in Preparation Phase of Data Mining Tasks

 560

is not the individual data of each user which is interesting, but the typical profile
types hold knowledge valuable for web service providers. Our motivation is based
on a real life project dealing with weblog processing [1]. The typical profiles in
our scope are created from a huge dataset containing more than 6 billions of
elementary records. Such cardinality in most of the cases calls for out-of-core
processing methods. This paper focuses on out-of-core pre-processing algorithms
that raise the abstraction level of datasets by aggregation. Our raw dataset contains
user identifiers and timestamps, which have to be transformed into a more
complex structure, called temporal profile by aggregating the clicks belonging to
the same user.

The organisation of this paper is as follows. Section 2 enumerates the general
requirements of large scale data processing and reveals the necessity of using out-
of-core processing methods by showing the limits of in-memory approaches.
Section 3 presents the two algorithms and their analysis. Periodic Partial Result
Merging and a K-Way Merging use the background storage in different way to
overcome the size limitations of the main memory. Section 4 shows the
performance analysis of algorithms using real data, while last section summarises
our work and presents the possible further works.

2 The Necessity of the Out-of-Core Processing

Efficient handling of real datasets with vast cardinality and information extraction
from them is a challenging technical problem even for today’s high-performance
computers. Filtering, transforming, processing this datasets and its visualisation
requires other methods than the ones used commonly in information systems.

Our dataset, like many other large datasets, is created in an automated manner,
continuously. Thus is essential for any out-of-core processing algorithm to ensure
a higher processing speed than the data creation speed, which helps to avoid the
agglomeration of raw data. This implies that every procedural step should
preferably have a linear, or nearly linear runtime complexity. As there exist
several problems with higher than linear runtime complexity, thus the above
requirement cannot be satisfied in every case.

Another factor, which has to be taken into consideration in any out-of-core
algorithm, is the higher access time of external storages against main memory.
Due to this, keeping I/O instructions at a minimum level is a requirement for an
efficient out-of-core method. If we can keep the number of storage accesses linear
in number of points we can avoid data extrusion, getting a nearly so effective
algorithm like the one mentioned in previous paragraph. This means that such
algorithms will be effective, which read only constant times the input dataset
(preferably once).

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 561

Beside these there are other factors which can increase runtime performance of
out-of-core approaches. Cache efficiency could mean a performance increase,
while the parallelisability can result further achievement in performance.

In order to illustrate the weaknesses of methods using only the main memory, thus
the need of an out-of-core approach, we present an eager, in-memory algorithm
and its analysis. Due to high cardinality a data container is needed that ensures an
efficient data lookup time, because we have to find one specified element among
millions of others. To solve this problem a hash table was used. The eager
algorithm stores this hash table in the main memory, it is extended and modified
continuously during the processing; and the content of memory is only saved to
the disk after finishing the whole dataset.

The processing is fast, but the increasing memory demand is the main
disadvantage of this algorithm, which makes it applicable only on smaller
datasets. When the physical memory reaches its end and virtual memory paging
start to dominate the runtime, this soon gets unmanageable long.

When handling large datasets we have to count with an immense runtime, which
could be expressed better in hours and days, than in seconds. Thus unexpected
errors or critical updates can stop the processing phase. The eager method is
sensible for such aborts, because the already processed results, stored only in
memory, get lost. This fact suggests a further weakness of this approach and the
need of fault-tolerance in out-of-core approaches.

The presented disadvantages of this method stress the need for other methods,
with controlled memory consumption. Out-of-core approaches mean a possible
solution for this problem.

In order to process large datasets and to do it effectively we present the Periodic
Partial Result Merging and a K-Way Merging based algorithm. These algorithms
follow the partitioning principle, where the input dataset is split into smaller
blocks to fit in the main memory [4]. In case of partitioning all the input records
are used, the complete dataset is covered and each element is used only once in a
partitioning. The partitions can be subsequent or arbitrary groups of records. After
processing every partition, local results are written to the disk and the global result
is created by merging the local results.

The creation of global result can follow different principles: in some cases the
global result is only the union of the local ones [7], [8], [9]. In other approach a
simple merging has to be done on the local data to get the global data. [4], [5].
There are cases when a more complex algorithm is used to get the global result
[10].

A partitioning algorithm requires the size of blocks to be determined somehow.
Basically, the successively equal-sized partitioning is a trivial, but working
method [4], [5], [6], although there are cases when a sophisticated partitioning
approach increases the out-of-core processing performance [8].

T. Schrádi et al.
Out-of Core Processing in Preparation Phase of Data Mining Tasks

 562

3 Out-of-Core Data Handling Approaches

In this section two out-of-core algorithm will be discussed and analysed: the first
one is the Periodic Partial Result Merging algorithm, which creates the global
result by continuous processing of blocks and their merging; the second one is a
K-Way Merge based method, when the final result is generated using a merging
tree, propagating processed blocks on different levels, getting closer to the global
result.

3.1 Periodic Partial Result Merging

As first step the input dataset has to be split horizontally in equal chunks. Let’s
assume the cardinality of dataset to be n and we split it into chunks containing m
records, which results s pieces of blocks. On an m-sized block the processing step
(calculations) is done, which results the so called local partial result. The first
local partial result is the global partial result too. The elements of the partial result
have to be ordered in a way, which ensure a linear merge run time complexity
with other elements. As next step the novel local partial result is merged with the
partial global result. Due to ordering this can be done in effective way reading the
records of two datasets only once. In the merging step there are elements with no
impact on each other, they have to be written out without any modification, while
from the elements with impact on each will be created a new element. After the
merging step finished a new global partial result will be created, while the
previous results have to be deleted. The last partial global result is regarded as the
global result.

The merging phase of periodic partial result merging algorithm is presented in the
Figure 1.

In order to keep I/O access at a lower level we can process more blocks at the
same time in the memory, thus obviating some I/O accesses. This block-based
modification of the presented algorithm makes it more effective in run-time. But
the number of blocks processed in the main memory at the same time is a very
sensible parameter of this modified approach and hard to determine in advance.
To avoid virtual memory handling caused paging, we have to control the memory
need of the algorithm, processing only so many data which fit in main memory.
This modification results the so called adaptive periodic partial result merging.
The performance tests suggest the efficiency of this approach.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 563

Figure 1

The sketch of merging phase

Analysing the runtime complexity of the Periodic Partial Result Merging
algorithm, basically two main components has to be calculated: the complexity of
I/O instructions and complexity of the processing. The I/O cost of the algorithm
consists of reading the records from local result and from the global result and
writing out the new result to the storage. Assuming that processing x records of
data generates αx amount of result (usually α«1), the cost of processing block j can
be calculated using the following equation:

())jα(mmjjmmkkkkk jdiskjwriteresultjreadresultjreaddatajdisk 121)1()()()1()()(−+=+−+=++= − αα
Thus, the total I/O cost complexity of the algorithm can be given it the following
way:

() ()
m

nnsmmsjmmsjmkk
s

j

s

j

s

j
jdiskdisk

αααα 22

111
)(12)12(1 +=+=−+=−+== ∑∑∑

===

In order to achieve nearly linear disk cost the shrinking factor (α) has to be a small
enough and the size of blocks (m) large enough.

The total processing cost can be evaluated using following formula:

() αβαβ mssmsfjmmfkk
s

j

s

j
jprocproc 2

)1()()(
11

)(
+

+=+== ∑∑
==

m
n

m
mfnm

m
n

m
n

m
mfnk proc 22

)(
2

)(2
2

2 αβαβαβ
+⎟

⎠
⎞

⎜
⎝
⎛ +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

, where f(m) denotes the

time complexity of processing of m sized block. The given formula contains a

T. Schrádi et al.
Out-of Core Processing in Preparation Phase of Data Mining Tasks

 564

quadratic member in number of points due to this out-of-core approach, but the
multiplying factor can be small enough to minimise the effect of this member,
because α, β are typically closer to 0 than to 1, and it is divided with the size of
block.

The presented algorithm can be suspended or restarted without losing the
previously processed results. This fault-tolerance is a very favourable property for
processing large datasets.

There is a prerequisite to apply this algorithm: the disk demand of the global
results has to be significantly smaller than disk demand of the records from the
result is created, namely the α<<1. If our dataset fulfil this prerequisite (typically
most of the dataset fulfil this prerequisite) we can draw the conclusion that the
presented algorithm can be effectively applied in out-of-core pre-processing.

3.2 K-way Merge Based Processing

In this approach the processing is divided into two steps. Our dataset is split into
m-sized blocks like in previous approach. First the processing of input data blocks
is done in a similar way presented in the description of eager method. In the main
memory a hash based container is maintained to store the processed data. There is
a crucial difference between the eager method and this: here only a small amount
of data is stored at the same time in the main memory. The processed blocks are
saved on the storage. The result is created from these chunks of processed data
using a k-way merge. In order to keep the merging time manageable an ordering is
needed on the processed data before saving, which ensures linear merging.

In the complexity investigation of this algorithm takes two factors into
consideration: the I/O cost and the procedural cost. To create the processed
version of input chucks we have to read all the data and write the processed data
back to storage. This can be expressed using following
formula: nkdisk)1(1 α+= The merging phase can be presented using the
merging tree. At a level in this tree during the merging phase the I/O cost consist
of the reading of the created temporary results and writing of the merged results.
Thus the total I/O cost is given by the following equation:

⎡ ⎤

∑
+

=

+
+ ⋅⋅⎥⎥
⎤

⎢⎢
⎡+⋅⋅⎥⎥

⎤
⎢⎢
⎡++=

1log

0

1
1)()1(

s

j

j
j

j
jdisk

k

km
k

skm
k
snk ααα

)(log2))(log231(nnmnk kkdisk ⋅⋅⋅+−+≈ ααα

This disk demand could be considered nearly linear (somewhere between linear
and)(log nn k⋅).

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 565

Beside disk demand the procedural cost affects the whole processing, too. This
can be calculated as follows:

)(log)1()(log nknmnk kkproc −⋅⋅+⋅≈ α

4 Performance Results

Figure 2 depicts the behaviour of the eager method in memory limited
environment. It shows how important it is to take control of the memory
consumption of an out-of-core processing. As it is shown the run time of the eager
algorithm becomes several time higher when paging occurs, while all the periodic
partial result merging versions have only normal increases in run time.

0

100

200

300

400

500

600

700

800

1 8 15 22 29 36 43 50 57 64
Number of processed log files [pcs]

Total execution time
 [min]

Eager method Block based (16 files)
Adaptive (300 MB) Adaptive (300 MB) without sorting

0

50

100

150

200

250

300

350

400

450

1 8 15 22 29 36 43 50 57 64

Number of processed log files [pcs]

Memory
[MB]

Eager method Block based (16 files)
Adaptive (300 MB) Adaptive (300 MB) without sortingl

Figure 2

Runtime (left side) and memory consumption (right side) of eager method in memory limited
environment compared with periodic partial result merging versions

Figure 3 presents different versions of periodic partial result merging: with
varying size of blocks and the different adaptive versions. As the memory
consumption graphics shows the faster the processing is, the bigger the memory
demand of the process is. It is observable that the memory consumption graph of
block-based versions of periodic partial result merging algorithm have an altering
characteristic. This mean if we would increase the number of blocks processed at
the same time, the memory demand could exceed the permissible bound and the
run time of the algorithm get out of our control. As the graphic of memory
consumption shows, the adaptive version of this algorithm ensures a stable,
controlled memory consumption to avoid virtual memory handling induced
paging.

T. Schrádi et al.
Out-of Core Processing in Preparation Phase of Data Mining Tasks

 566

-2000

0

2000

4000

6000

8000

10000

1 78 155 232 309 386 463 540 617 694 771 848 925 1002 1079 1156 1233 1310 1387 1464 1541

Number of processed log files [pcs]

Total execution time
[min]

Blocksize = 1 f iles Blocksize = 2 files
Blocksize = 4 f iles Blocksize = 8 files
Blocksize = 16 files Adaptive (512 MB)

0

200

400

600

800

1000

1200

1 76 151 226 301 376 451 526 601 676 751 826 901 976 1051 1126 1201 1276 1351 1426 1501

Number of processed log files [pcs]

Memory usage
[MB]

Blocksize = 1 f ile Blocksize = 2 f iles Blocksize = 4 f iles
Blocksize = 8 f iles Blocksize = 16 f iles Adaptive (512 MB)
Adaptuve (1024 MB)

Figure 3
Run time (left side) and memory consumption (right side) of different periodic partial result merging

version

Figure 4 shows the run time performance of merging phase on an “artificial”
dataset. It is created from the real dataset, but all the overlapping is removed in
order to see the correlation between number of levels in merging tree and runtime.
This overlapping has an additional effect shown on the next figure. In this case the
number of opened files (these blocks of input data are stored in files) means an
other influencing factor. For small values of k the run time graphics is varying
according to number of levels in merging tree (the broken line on Figure 4), but
for larger k the processing becomes slower because of multiple reads from
storage.

0

2

4

6

8

10

12

14

2 7 14 20 25 30 35 40 45 50 55 60 65 74 84 94 10
4

11
4

12
2

13
0

14
5

18
0

20
5

40
0

65
0

90
0

-way merge

Run time
 [min]

0

2

4

6

8

10

12

Number of levels in
merging tree

160 MB 320 MB 480 MB 640 MB Levels in merging tree

Figure 4

Run time of k-way merge based algorithm using artificial data and number of levels in merging tree

Figure 5 shows the run time of merging phase using real data, with overlapping
(the element with the same id can be found in more blocks). As the previous figure
suggests the k should be chosen from the neighbourhood of 32, because the
merging time here is the lowest and the number of storage accesses are minimal.
According to Figure 5 the choice of 128 would be optimal, which is significantly
higher than in the previous case. This occurs due to the overlapping in dataset;

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 567

handling records at the same time in the main memory, which have to aggregated
causes performance increasing, by avoiding multiple secondary storage accesses.
Thus the runtime performance in real dataset is influenced by the three factors:
number of levels in merging tree, number of I/O accesses and overlapping ratio.

190

195

200

205

210

215

220

225

230

235

32 64 128 256 1571 -way merge

Run time
 [min]

Figure 5

Run time of k-way merge based algorithm using a real dataset

Figure 6 is a summarising graphics showing the most optimal versions of different
approaches on real dataset, containing more then 6 billions of records, while the
comparative table suggests the advantages and disadvantages of different
approaches. The presented version of eager method contains no fault-tolerance,
while periodic partial result merging and the k-way merge based algorithm have it.
According to experiments’ results the eager method is applicable on smaller
datasets, while the others on large datasets, too. Regarding the result of merging
only the PPRM creates such local results, which can be taken as complete result of
the processed blocks.

Total processing time using different approaches

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Block-based
(8 files)

 Block-
based (16

files)

 Adaptive
(512 MB)

 Adaptive
(1024 MB)

 32-Way
Merge

 64-Way
Merge

 128-Way
Merge

 256-Way
Merge

Runt ime
 [min]

 eager PPRM k-way

Complexity n n2 nlogn

Checkpoints - + +

Dataset size S B B

Result E C E

Figure 6
Total processing time of different out-of-core approaches using a real dataset and a comparative table

of techniques

T. Schrádi et al.
Out-of Core Processing in Preparation Phase of Data Mining Tasks

 568

Conclusions

In this paper we presented two approaches to process large amount of data
efficiently, in a fault-tolerant way. Using a real dataset we have shown that eager
approaches operating only in the main memory are not applicable. We presented
optimalization possibilities for both of algorithms in order to keep memory
consumption and run time manageable. The adaptive version of Periodic Partial
Result Merging algorithm proved to be the most suitable to process large datasets
effectively and in a fault tolerant-way, using even an average PC.

A further optimalization can be done in field of presented algorithms. A parallel
version of Periodic Partial Result Merging could achieve gain in runtime
performance. Detecting the optimal number of parallel processes, each of them
realising the distributed version of Periodic Partial Result Merging algorithm and
its influencing factor is a further research area.

Cache oblivious versions of the presented algorithms could result better runtime
performances by optimalized cache handling. Thus a funnel-sort based approach
could ensure better performances compared to k-way merge based approach.

References

[1] Iváncsy, R. and Juhász, S. 2007, Analysis of Web User Identification
Methods, Proc. of 4th International Conference on Computer, Electrical,
and System Science, and Engineering, CESSE 2007, Venice, Italy, pp. 70-
76

[2] Benczúr A. A., Csalogány K., Lukács A. Rácz B. Sidló Cs., Uher M. and
Végh L., Architecture for mining massive web logs with experiments, In
Proceedings of the HUBUSKA Open Workshop on Generic Issues of
Knowledge Technologies

[3] Sándor Juhász and Renáta Iváncsy: Out-of-core Data Handling with
Periodic Partial Result Merging in Proc. of the IADIS European
Conference on Data Mining 2009, part of the IADIS Multiconference of
Computer Science and Information systems 2009, Algarve, Portugal, pp.
50-58, June 2009

[4] Savasere A., Omiecinski E. and Navathe S. 1995, An efficient algorithm for
mining association rules in large databases, VLDB '95: Proceedings of the
21th International Conference on Very Large Data Bases, pp. 432-444

[5] Lin J. and Dunham M. H 1998., Mining association rules: Anti-skew
algorithms, In 14th Intl. Conf. on Data Engineering, pp. 486-493

[6] Lucchesse S C., Perego O. R. 2006, Mining frequent closed itemsets out-of-
core, 6th SIAM International Conference on Data Mining, pp. 419-429

[7] Grahne, G. Zhu J. 2004, Mining frequent itemsets from secondary memory,
ICDM '04, 4th IEEE International Conference on Data Mining, pp. 91-98

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 569

[8] Nguyen Nhu, S., Orlowska, M. E. 2005, Improvements in the data
partitioning approach for frequent itemsets mining, 9th European
Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD-05), pp. 625-633

[9] Nguyen S. N. and Orlowska M. E. 2006, A further study in the data
partitioning approach for frequent itemsets mining, ADC '06 Proceedings
of the 17th Australasian Database Conference, pp. 31-37

[10] Tang, P., Ning, L., and Wu, N. 2005. Domain and data partitioning for
parallel mining of frequent closed itemsets. In Proceedings of the 43rd
Annual Southeast Regional Conference - Volume 1 (Kennesaw, Georgia,
March 18 - 20, 2005). ACM-SE 43. ACM, New York, NY, 250-255. DOI=
http://doi.acm.org/10.1145/1167350.1167423

