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Abstract: This paper compares out-of-core approaches used in data pre-processing phase 
of data mining task dealing with vast datasets. Due to its high cardinality the dataset 
exceeds the limits of straightforward processing methods taking advantage of the main 
memory only. To demonstrate the problem of limited memory and high cardinality we 
present the weaknesses of an eager method. To keep the memory and the run time 
manageable we introduce and analyse two out-of-core algorithms: Periodic Partial Result 
Merging and a K-way Merge based method. Beside the core version of the algorithms 
above, optimalized versions are suggested to meet the performance requirements. Using 
these versions the processing of the dataset is relatively fast, fault-tolerant and the memory 
usage remains under complete control even on an average PC, which is unachievable by 
eager approaches. 
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1 Introduction and Motivation 

The aim of data mining related tasks is knowledge discovery, which is revealing 
structure or rule extraction from large unknown dataset. Globally a lot of data are 
stored in different databases or on different servers in a raw form. During 
everyday workflow it is easier to store the data at a lower abstraction level and to 
transform it on demand to a higher abstraction level during an analysis. Regarding 
the different phases of data mining task this transformation, the data preparation 
step, can cover a high percentage of the whole process time. Thus this step is a key 
point in speeding-up the data mining process. 

Log analysis is a frequently applied technique when trying to derive useful 
information from web traffic. Logs store elementary data record containing 
information about various facts (e.g. user identifiers or the timestamp of a 
request). From these logs the activity of various users can separated and identified 
with cookie-based techniques [1], [2]. After identification user behaviour profiles 
can be created based on the information belonging to each specific user. Usually it 
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is not the individual data of each user which is interesting, but the typical profile 
types hold knowledge valuable for web service providers. Our motivation is based 
on a real life project dealing with weblog processing [1]. The typical profiles in 
our scope are created from a huge dataset containing more than 6 billions of 
elementary records. Such cardinality in most of the cases calls for out-of-core 
processing methods. This paper focuses on out-of-core pre-processing algorithms 
that raise the abstraction level of datasets by aggregation. Our raw dataset contains 
user identifiers and timestamps, which have to be transformed into a more 
complex structure, called temporal profile by aggregating the clicks belonging to 
the same user.  

The organisation of this paper is as follows. Section 2 enumerates the general 
requirements of large scale data processing and reveals the necessity of using out-
of-core processing methods by showing the limits of in-memory approaches. 
Section 3 presents the two algorithms and their analysis. Periodic Partial Result 
Merging and a K-Way Merging use the background storage in different way to 
overcome the size limitations of the main memory. Section 4 shows the 
performance analysis of algorithms using real data, while last section summarises 
our work and presents the possible further works. 

2 The Necessity of the Out-of-Core Processing 

Efficient handling of real datasets with vast cardinality and information extraction 
from them is a challenging technical problem even for today’s high-performance 
computers. Filtering, transforming, processing this datasets and its visualisation 
requires other methods than the ones used commonly in information systems. 

Our dataset, like many other large datasets, is created in an automated manner, 
continuously.  Thus is essential for any out-of-core processing algorithm to ensure 
a higher processing speed than the data creation speed, which helps to avoid the 
agglomeration of raw data. This implies that every procedural step should 
preferably have a linear, or nearly linear runtime complexity. As there exist 
several problems with higher than linear runtime complexity, thus the above 
requirement cannot be satisfied in every case. 

Another factor, which has to be taken into consideration in any out-of-core 
algorithm, is the higher access time of external storages against main memory. 
Due to this, keeping I/O instructions at a minimum level is a requirement for an 
efficient out-of-core method. If we can keep the number of storage accesses linear 
in number of points we can avoid data extrusion, getting a nearly so effective 
algorithm like the one mentioned in previous paragraph. This means that such 
algorithms will be effective, which read only constant times the input dataset 
(preferably once). 
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Beside these there are other factors which can increase runtime performance of 
out-of-core approaches. Cache efficiency could mean a performance increase, 
while the parallelisability can result further achievement in performance. 

In order to illustrate the weaknesses of methods using only the main memory, thus 
the need of an out-of-core approach, we present an eager, in-memory algorithm 
and its analysis. Due to high cardinality a data container is needed that ensures an 
efficient data lookup time, because we have to find one specified element among 
millions of others. To solve this problem a hash table was used. The eager 
algorithm stores this hash table in the main memory, it is extended and modified 
continuously during the processing; and the content of memory is only saved to 
the disk after finishing the whole dataset. 

The processing is fast, but the increasing memory demand is the main 
disadvantage of this algorithm, which makes it applicable only on smaller 
datasets. When the physical memory reaches its end and virtual memory paging 
start to dominate the runtime, this soon gets unmanageable long. 

When handling large datasets we have to count with an immense runtime, which 
could be expressed better in hours and days, than in seconds. Thus unexpected 
errors or critical updates can stop the processing phase. The eager method is 
sensible for such aborts, because the already processed results, stored only in 
memory, get lost. This fact suggests a further weakness of this approach and the 
need of fault-tolerance in out-of-core approaches. 

The presented disadvantages of this method stress the need for other methods, 
with controlled memory consumption. Out-of-core approaches mean a possible 
solution for this problem. 

In order to process large datasets and to do it effectively we present the Periodic 
Partial Result Merging and a K-Way Merging based algorithm. These algorithms 
follow the partitioning principle, where the input dataset is split into smaller 
blocks to fit in the main memory [4]. In case of partitioning all the input records 
are used, the complete dataset is covered and each element is used only once in a 
partitioning. The partitions can be subsequent or arbitrary groups of records. After 
processing every partition, local results are written to the disk and the global result 
is created by merging the local results. 

The creation of global result can follow different principles: in some cases the 
global result is only the union of the local ones [7], [8], [9]. In other approach a 
simple merging has to be done on the local data to get the global data. [4], [5]. 
There are cases when a more complex algorithm is used to get the global result 
[10]. 

A partitioning algorithm requires the size of blocks to be determined somehow. 
Basically, the successively equal-sized partitioning is a trivial, but working 
method [4], [5], [6], although there are cases when a sophisticated partitioning 
approach increases the out-of-core processing performance [8]. 
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3 Out-of-Core Data Handling Approaches 

In this section two out-of-core algorithm will be discussed and analysed: the first 
one is the Periodic Partial Result Merging algorithm, which creates the global 
result by continuous processing of blocks and their merging; the second one is a 
K-Way Merge based method, when the final result is generated using a merging 
tree, propagating processed blocks on different levels, getting closer to the global 
result. 

3.1 Periodic Partial Result Merging 

As first step the input dataset has to be split horizontally in equal chunks. Let’s 
assume the cardinality of dataset to be n and we split it into chunks containing m 
records, which results s pieces of blocks. On an m-sized block the processing step 
(calculations) is done, which results the so called local partial result. The first 
local partial result is the global partial result too. The elements of the partial result 
have to be ordered in a way, which ensure a linear merge run time complexity 
with other elements. As next step the novel local partial result is merged with the 
partial global result. Due to ordering this can be done in effective way reading the 
records of two datasets only once. In the merging step there are elements with no 
impact on each other, they have to be written out without any modification, while 
from the elements with impact on each will be created a new element. After the 
merging step finished a new global partial result will be created, while the 
previous results have to be deleted. The last partial global result is regarded as the 
global result. 

The merging phase of periodic partial result merging algorithm is presented in the 
Figure 1. 

In order to keep I/O access at a lower level we can process more blocks at the 
same time in the memory, thus obviating some I/O accesses. This block-based 
modification of the presented algorithm makes it more effective in run-time. But 
the number of blocks processed in the main memory at the same time is a very 
sensible parameter of this modified approach and hard to determine in advance. 
To avoid virtual memory handling caused paging, we have to control the memory 
need of the algorithm, processing only so many data which fit in main memory. 
This modification results the so called adaptive periodic partial result merging. 
The performance tests suggest the efficiency of this approach. 
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Figure 1 

The sketch of merging phase 

Analysing the runtime complexity of the Periodic Partial Result Merging 
algorithm, basically two main components has to be calculated: the complexity of 
I/O instructions and complexity of the processing. The I/O cost of the algorithm 
consists of reading the records from local result and from the global result and 
writing out the new result to the storage. Assuming that processing x records of 
data generates αx amount of result (usually α«1), the cost of processing block j can 
be calculated using the following equation: 
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In order to achieve nearly linear disk cost the shrinking factor (α) has to be a small 
enough and the size of blocks (m) large enough. 

The total processing cost can be evaluated using following formula: 
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time complexity of processing of m sized block. The given formula contains a 
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quadratic member in number of points due to this out-of-core approach, but the 
multiplying factor can be small enough to minimise the effect of this member, 
because α, β are typically closer to 0 than to 1, and it is divided with the size of 
block. 

The presented algorithm can be suspended or restarted without losing the 
previously processed results. This fault-tolerance is a very favourable property for 
processing large datasets. 

There is a prerequisite to apply this algorithm: the disk demand of the global 
results has to be significantly smaller than disk demand of the records from the 
result is created, namely the α<<1. If our dataset fulfil this prerequisite (typically 
most of the dataset fulfil this prerequisite) we can draw the conclusion that the 
presented algorithm can be effectively applied in out-of-core pre-processing. 

3.2 K-way Merge Based Processing 

In this approach the processing is divided into two steps. Our dataset is split into 
m-sized blocks like in previous approach. First the processing of input data blocks 
is done in a similar way presented in the description of eager method. In the main 
memory a hash based container is maintained to store the processed data. There is 
a crucial difference between the eager method and this: here only a small amount 
of data is stored at the same time in the main memory. The processed blocks are 
saved on the storage. The result is created from these chunks of processed data 
using a k-way merge. In order to keep the merging time manageable an ordering is 
needed on the processed data before saving, which ensures linear merging. 

In the complexity investigation of this algorithm takes two factors into 
consideration: the I/O cost and the procedural cost. To create the processed 
version of input chucks we have to read all the data and write the processed data 
back to storage. This can be expressed using following 
formula: nkdisk )1(1 α+=  The merging phase can be presented using the 
merging tree. At a level in this tree during the merging phase the I/O cost consist 
of the reading of the created temporary results and writing of the merged results. 
Thus the total I/O cost is given by the following equation: 
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This disk demand could be considered nearly linear (somewhere between linear 
and )(log nn k⋅ ). 
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Beside disk demand the procedural cost affects the whole processing, too. This 
can be calculated as follows:  

)(log)1()(log nknmnk kkproc −⋅⋅+⋅≈ α  

4 Performance Results 

Figure 2 depicts the behaviour of the eager method in memory limited 
environment. It shows how important it is to take control of the memory 
consumption of an out-of-core processing. As it is shown the run time of the eager 
algorithm becomes several time higher when paging occurs, while all the periodic 
partial result merging versions have only normal increases in run time. 
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Figure 2 

Runtime (left side) and memory consumption (right side) of eager method in memory limited 
environment compared with periodic partial result merging versions 

Figure 3 presents different versions of periodic partial result merging: with 
varying size of blocks and the different adaptive versions. As the memory 
consumption graphics shows the faster the processing is, the bigger the memory 
demand of the process is. It is observable that the memory consumption graph of 
block-based versions of periodic partial result merging algorithm have an altering 
characteristic. This mean if we would increase the number of blocks processed at 
the same time, the memory demand could exceed the permissible bound and the 
run time of the algorithm get out of our control. As the graphic of memory 
consumption shows, the adaptive version of this algorithm ensures a stable, 
controlled memory consumption to avoid virtual memory handling induced 
paging. 
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Figure 3 
Run time (left side) and memory consumption (right side) of different periodic partial result merging 

version 

Figure 4 shows the run time performance of merging phase on an “artificial” 
dataset. It is created from the real dataset, but all the overlapping is removed in 
order to see the correlation between number of levels in merging tree and runtime. 
This overlapping has an additional effect shown on the next figure. In this case the 
number of opened files (these blocks of input data are stored in files) means an 
other influencing factor. For small values of k the run time graphics is varying 
according to number of levels in merging tree (the broken line on Figure 4), but 
for larger k the processing becomes slower because of multiple reads from 
storage. 
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Figure 4 

Run time of k-way merge based algorithm using artificial data  and number of levels in merging tree 

Figure 5 shows the run time of merging phase using real data, with overlapping 
(the element with the same id can be found in more blocks). As the previous figure 
suggests the k should be chosen from the neighbourhood of 32, because the 
merging time here is the lowest and the number of storage accesses are minimal. 
According to Figure 5 the choice of 128 would be optimal, which is significantly 
higher than in the previous case. This occurs due to the overlapping in dataset; 
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handling records at the same time in the main memory, which have to aggregated 
causes performance increasing, by avoiding multiple secondary storage accesses. 
Thus the runtime performance in real dataset is influenced by the three factors: 
number of levels in merging tree, number of I/O accesses and overlapping ratio. 
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Figure 5 

Run time of k-way merge based algorithm using a real dataset 

Figure 6 is a summarising graphics showing the most optimal versions of different 
approaches on real dataset, containing more then 6 billions of records, while the 
comparative table suggests the advantages and disadvantages of different 
approaches. The presented version of eager method contains no fault-tolerance, 
while periodic partial result merging and the k-way merge based algorithm have it. 
According to experiments’ results the eager method is applicable on smaller 
datasets, while the others on large datasets, too. Regarding the result of merging 
only the PPRM creates such local results, which can be taken as complete result of 
the processed blocks. 
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Figure 6 
Total processing time of different out-of-core approaches using a real dataset and a comparative table 

of techniques 
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Conclusions 

In this paper we presented two approaches to process large amount of data 
efficiently, in a fault-tolerant way. Using a real dataset we have shown that eager 
approaches operating only in the main memory are not applicable. We presented 
optimalization possibilities for both of algorithms in order to keep memory 
consumption and run time manageable. The adaptive version of Periodic Partial 
Result Merging algorithm proved to be the most suitable to process large datasets 
effectively and in a fault tolerant-way, using even an average PC. 

A further optimalization can be done in field of presented algorithms. A parallel 
version of Periodic Partial Result Merging could achieve gain in runtime 
performance. Detecting the optimal number of parallel processes, each of them 
realising the distributed version of Periodic Partial Result Merging algorithm and 
its influencing factor is a further research area. 

Cache oblivious versions of the presented algorithms could result better runtime 
performances by optimalized cache handling. Thus a funnel-sort based approach 
could ensure better performances compared to k-way merge based approach. 
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