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Abstract: A method is presented that approximates the zero-set of an unknown implicit function
based on a set of noisy observations. The algorithm operates by adaptively decomposing the entire
domain into partially overlapping subdomains, minimizing misfit over the subdomain and splitting
the subdomain if necessary. A consistent estimator is applied to get a parametric polynomial
model for a single subdomain, and a partition of unity approach is taken to blend local estimates
into a global estimate.
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1 Introduction
Reconstructing a model from a set of observations is an important problem when one
seeks to capture the internal laws that describe a system. In most cases, the model
leads to a more compact representation of the relationship between the variables and
simplifies a wide range of subsequent operations. For instance, laser scanning or other
computer vision techniques produce a large set of (unorganized) data that is cumber-
some to manipulate directly. A scanned version of an ellipse consists of thousands of
points yet the simple relationship f(x0) = v>0 Qv0 = 0 with symmetric parameter
matrix Q and v0 =

[
x0 y0 z0 1

]
perfectly describes the model. More gener-

ally, reconstructing a surface as the zero-set of a scalar-valued implicit function f(x0)
is desired, which greatly simplifies constructive solid geometry (CSG) operations such



as boolean union, difference and intersection. CSG operations are typically difficult to
perform on polygonal meshes as one has to take precautions to ensure the compactness
of the resultant surface but are straightforward on an implicit function representation.
For instance, let f1(x0) = 0 and f2(x0) = 0 be implicit function representations of two
objects, then max (f1(x0), f2(x0)) defines the intersection, min (f1(x0), f2(x0)) the
union, provided that f(x0) < 0 is the inside of the object.

Nevertheless, a major problem in faithfully reconstructing an implicit function from
acquired data is that data is polluted with measurement noise, possibly to a different
degree for each variable. Estimation algorithms that do not take this into account are
often biased or inconsistent. Errors-in-variables algorithms, however, specifically target
those applications that seek to minimize the error in the reconstructed f(x0) = 0 even
though only noise-contaminated observations x are at our disposal.

We propose a semi-parametric algorithm based on domain decomposition, local
polynomial approximation, and blending of subdomain approximations to construct an
implicit function f(x0) = 0 from the noisy observations x. The algorithm starts with a
polynomial function approximation on the domain. If the approximation error exceeds
a threshold, the domain is subdivided and local approximations are constructed for each
subdomain. This iterative procedure results in an approximation tree with local approx-
imations in leaf nodes, which are merged to get a global approximation with a blending
function.

The paper is structured as follows. The problem setting and notational conventions
are introduced in Section 2, while Section 3 surveys related work. The proposed re-
construction algorithm is presented in Section 4. Some simulation results are shown in
Section 5 before the paper concludes with Section 6.

In the rest of the paper, the following notational conventions are adopted. R denotes
the set of real numbers, Rn is a column vector of dimension n. x is a scalar variable, x
is a vector and X denotes a matrix; f(x) is a scalar-valued vector function and f(x) is a
vector-valued vector function. Ex is the expected value of the random variable x. Given
the noisy variable x, its (unobservable) noise-free counterpart is x0, which generalizes
to the vector versions x and x0.

2 Problem setting
Let us consider a static system defined by the (unknown but approximated) implicit
function f : Rn → R in n-dimensional space over a compact domain with f(x0,i) = 0
for each underlying data point x0,i (i.e. each x0,i is an element of the zero-set of f )
where the subscript i in x0,i denotes the ith observation, i = 1, . . . , N . As the data
points are observed with noise, x0,i = xi− x̃i where the (unknown) measurement noise



contribution x̃i ∼ N(0, Cx) with Cx being the (known) noise covariance matrix:

Cx = diag
(
σ2
x

)
= E

(
x̃x̃>

)
≈

1
N

N∑
i=1

x̃ix̃>i

in which σ2
x is a vector of variances for each component of x̃. Introduce a polynomial

approximation of f with degree d over a domain D ⊂ Rn such that pD = θ>g(x)
where g(x) is a linearization of x and θ ∈ R 1

6 (d+1)(d+2)(d+3) is a parameter vector. For
example, the 3D quadric polynomial

pD(x, y, z) =
∑

0≤i+j+k≤d

θi,j,kx
iyjzk

takes the vectorial form pD = θ>g(x) with θ ∈ R10 and g(x) : R3 → R10 where

g(x) =
[
x2 y2 z2 xy xz yx x y z 1

]>
,

while for linear approximation g(x) is basically an identity mapping so that

g(x) =
[

x 1
]>
.

Furthermore, denote with h(x) the linearization that omits the last, constant term.
As the implicit function f is reconstructed from noisy samples, a perfect fit, i.e. data

interpolation is not desired. Instead, a function is approximated from the data that ex-
hibits a misfit. The misfit may either be measured geometrically, i.e. the Euclidean dis-
tance of the noise-free data points x0,i from the approximating function, or algebraically
as (

θ>g(x)
)2

in a least-squares sense.

3 Related work
For three-dimensional surface reconstruction from a noisy point cloud, several algo-
rithms have been devised employing Delaunay triangulation [4, 8, 10] but these produce
a surface mesh rather than an implicit function that captures the relationship between
points. Implicit function reconstruction with radial basis functions (RBFs) [3, 12] and
domain decomposition [11] with moderately noisy conditions have also been investi-
gated. A different approach is taken by Zhao et al. [15] who propose a gradient descent
method to minimize a combined elastic and potential energy functional.



Guennebaud et al. [5] employ a weighed moving least squares (MLS) approach
where the implicit function f is approximated from a compact support region. To eval-
uate f for any point x in n-dimensional space, a least-squares problem is solved on the
point set within the support region, determined by a support radius R. First, a local
parameter vector θ̂ is computed as

θ̂(x) = arg min
θ

∥∥∥W 1
2 (x)Zθ

∥∥∥2

(1)

where W(x) is a diagonal weighing matrix whose entries are computed based on the
distance of each point within the support region to the point x (the entries take a value
of zero for points outside the support region), and Z is a matrix of linearizations of all
points within the support region. Second, the estimate is computed as f(x) = θ̂>g(x).
They fit spheres, i.e. their linearization function is

g(x) =
[
x2 y2 z2 x y z 1

]>
.

They also present an efficient method for the case when data points are given with nor-
mals, as well as estimation of sharp features and normal vector estimation for the ap-
proximated implicit surface in the absence of preliminarily specified normals.

As apparent from the necessity to solve a least squares problem for each point x
for which we wish to evaluate the implicit function, the approach is computationally
rather intensive. This is especially undesirable when the implicit function representation
is to be converted into a polygonal mesh [2] for the sake of presentation. Ohtake et
al. [11] propose a computationally less intensive method that decomposes the entire
domain into overlapping subdomains, and the least squares problem is solved only for
the subdomains. Whenever the implicit function f is to be evaluated, local estimates on
the affected subdomains (which contain the point) are blended together using a partition
of unity approach to obtain an estimate valid for the entire domain.

Regardless of the different approaches a local neighborhood is used to produce a
global estimate, parametric estimation in a local neighborhood involves a least-squares
optimization problem. When fitting higher-order surfaces in the errors-in-variables con-
text, the nonlinearity in the model (e.g. due to terms x2, y2 and z2 for sphere fitting)
leads to inconsistent estimates for ordinary least-squares and orthogonal least-squares
i.e. the estimates do not converge to their true value as the sample size increases [9].
Consequently, local estimators that are consistent [9, 13] are of paramount importance.

4 Reconstruction algorithm
Surface reconstruction algorithms [5, 11], which have been briefly discussed in Sec-
tion 3, do not distinctively handle noisy data in their local approximation algorithms.



Notably, the least squares objective function (1) treats misfit as it were present in all
components of g(x) (which accounts for a single row of Z) equally, which, however, is
truly not the case. Reformulating (1),

θ̂(x) = arg min
θ

∥∥∥W 1
2 (x)Zθ

∥∥∥2

= arg min
θ
θ>Z>W(x)Zθ

the least-squares estimates incorporates a weighed covariance matrix D = Z>W(x)Z.
Investigating the entries of D for W = I and

g(x) =
[
x2 x 1

]>
,

the self-covariance for the linear component is

Ex2 = E(x0 + x̃)2 = E(x2
0 + 2x0x̃+ x̃2) = Ex2

0 + σ2
x

but for a quadratic term is

Ex4 = E (x0 + x̃)4 = E
(
x4

0 + 4x3
0x̃+ 6x2

0x̃
2 + 4x0x̃

3 + x̃4
)

= Ex4
0 + 6σ2

xEx2
0 + 3σ4

x.

Notice how additional noise terms and dependence on unobservable noise-free data ap-
pear. In this section, we propose a reconstruction algorithm that takes these discrepan-
cies into account thereby incorporating a consistent local estimator.

4.1 Local approximation
For local approximation over a subdomainD, we employ a parametric estimation method
combined with model selection. By selecting a model, we commit ourselves to the par-
ticular parameter structure to use, i.e. we choose a linearization g(x), for which the
corresponding parameter vector θ is subsequently sought. For example, for a quadratic
model, a linearization

gquad(x) =
[
x2 y2 z2 xy xz yx x y z 1

]
is constructed but for a linear model

glin(x) =
[
x y z 1

]
.

Once a model has been chosen, the problem reduces to a parameter estimation problem
that is linear in parameters θ as f(x) ≈ θ>g(x).

For the sake of local approximation, we apply a “reverse thinking” and estimate
parameters over the same data set with multiple model assumptions and choose the par-
ticular model that minimizes an error measure. The goal is to avoid overfitting the data,



i.e. to incorporate perturbations into the reconstructed implicit function that are other-
wise only attributable to noise. Conventionally, this is performed using cross-validation
but the error that measures the bias from the known noise model can also serve as an
error measure, as we shall later see in this section.

In order to estimate parameters for a particular linearization, we employ a simple
parametric estimation method based on data covariance matrices. For brevity, let z =
h(x), θ =

[
θ̄ b

]
(where b pairs with the constant in g(x)) and introduce the noisy

and noise-free observation sample and noise covariance matrices as

D = E
(
zz>

)
≈

1
N

N∑
i=1

ziz>i

D0 = E
(
z0z>0

)
≈

1
N

N∑
i=1

z0,iz>0,i

C = E
(
z̃z̃>

)
≈

1
N

N∑
i=1

z̃iz̃>i . (2)

As θ̄>z0 = −b for those data points that satisfy the polynomial implicit function ap-
proximation and

D = E
(
zz>

)
= E

(
z0z>0 + z̃z̃>

)
= D0 + C,

the (full-rank) sample covariance matrix D comprising of noisy observations can be
decomposed into a (rank-deficient) noise-free component D0 and a noise component C

θ>Dθ = θ>D0θ + θ>Cθ = θ>Cθ

in which finding θ entails minimizing the objective function

J(θ) = θ>Dθ − θ>Cθ. (3)

We get an alternative formulation for C as compared to (2) if we write its entries as poly-
nomials of terms that are a product of noise “magnitude” and “structure”. For instance,
let

z =
[
x2 x

]>
,

for which the covariance of the linear term is

Clin = Ex2 − Ex2
0 = σ2

x = µσ̄2
x

where µ is the noise “magnitude”, and of the quadratic term is

Cquad = Ex4 − Ex4
0 = 3µ2σ̄4

x − 6µσ̄2
xEx2

0.



This scheme generalizes to arbitrary entries, such that C = C(µ) is a polynomial in µ
with the coefficients being matrices, and is called a nonlinear extension to the Koopmans
method by [13]. As a result, (3) can be effectively tackled by solving the eigenvector
decomposition problem

(D−C(µ)) θ = 0

where C(µ) is a noise covariance matrix known up to a scalar µ (if only linear com-
ponents are present) or a matrix polynomial of µ (in general). The solutions are the
smallest nonzero real eigenvalue and the corresponding eigenvector. If a linear model is
fitted to the data, this scheme produces maximum likelihood estimates obtained with

det (D0) = det (D− µCx) = 0

so that the model parameter vector θ is found by solving a generalized eigenvector prob-
lem on the matrix pair (D, Cx). For a polynomial degree d > 1, the estimates are still
statistically consistent [13] even if not maximum likelihood. In addition, C 6= Cx for
the higher-order polynomial case and due to the linearization g involved will depend not
only on noise properties but also on noise-free observations. For d = 2, the eigenvector
problem to solve is (

D− µC− µ2C
)
θ = 0

in which C is a function of the set of noise-free data Z0. As noise-free data are not
available, C has to be estimated from noisy observations. For example, C for a quadric
in 2D looks as follows:

C(µ) = µ2


3σ̄4

x σ̄2
xσ̄

2
y 0 0 0

σ̄2
xσ̄

2
y 3σ̄4

y 0 0 0
0 0 σ̄2

xσ̄
2
y 0 0

0 0 0 0 0
0 0 0 0 0



− µ


6σ̄2

xx̄
2 x̄2σ̄2

y + σ̄2
xȳ

2 3ȳx̄σ̄2
x 3x̄σ̄2

x ȳσ̄2
x

x̄2σ̄2
y + σ̄2

xȳ
2 6σ̄2

y ȳ
2 3x̄ȳσ̄2

y x̄σ̄2
y 3ȳσ̄2

y

3ȳx̄σ̄2
x 3x̄ȳσ̄2

y x̄2σ̄2
y + σ̄2

xȳ
2 ȳσ̄2

x x̄σ̄2
y

3x̄σ̄2
x x̄σ̄2

y ȳσ̄2
x σ̄2

x 0
ȳσ̄2

x 3ȳσ̄2
y x̄σ̄2

y 0 σ̄2
y


where the notations σ2

x = µσ̄2
x, σ2

y = µσ̄2
y , x̄ = 1

N

∑N
i=1 xi and x̄2 = 1

N

∑N
i=1 x

2
i have

been used.
Once the eigenvalue problem has been solved, the parameter b for the constant term

is found as the mean of the error vector e = Zθ.
Insofar, the covariance matrix has been split into “magnitude” and “structure”, and

the scalar variable µ has been treated as if it were also an unknown, which however is not



the case. Consequently, model validation is possible by comparing the noise magnitude
µ̂ as emitted by the estimator given a particular (linear or higher-order) model to the true
value. The particular model to use can be found out by minimizing |µ− µ̂|.

4.2 Global approximation
Local approximation yields a polynomial pD = θ>g(x) that approximates f over a
small subdomain D. In order to reconstruct an f that is valid over the entire domain,
a decomposition of the domain into local subdomains as well as a blending of local
approximations into a global approximation are necessary. The former we attain with
iterative subdivision, and the latter by partition of unity blending. The decomposition
algorithm is as follows:

1. Initialize D = C where C is a bounding cube for the entire compact domain of
interest. Set the support radius R = αd where d is the diameter of the bounding
cube.

2. Test whether the domain contains enough data to obtain a reliable local estimate,
i.e. |D| = Nmin. If not, enlarge the domain D accordingly.

3. Compute a local approximation over the possibly enlarged domain.

(a) If the approximation error exceeds a threshold ε, subdivide the domain into
2n equal parts where n is the dimensionality of the domain. (For 3D, this is
an octree subdivision.) Repeat from step 2 for each subdomain with updated
support radius R.

(b) Otherwise save the estimated parameters θ to be local estimates for the (orig-
inal) domain D.

The principle of partition of unity blending is that for any x for which the value of the
implicit function f is sought, a weighed estimate qD = wDpD is computed withwD = 0
and

∑
D wD = 1. One possible choice for wD is to measure

w̄D = b

(
3 ‖x− cD‖

2RD
+

3
2

)
where b is the third order B-spline blending function

b =


1
2 t

2 0 6 t 6 1
1
2 (−2t2 + 6t− 3) 1 6 t 6 2
1
2 (t2 − 6t+ 9) 2 6 t 6 3
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Figure 1: The Stanford bunny model.

or use Wendland’s weighing function [14]

w̄D =
(

1− ‖x− cD‖
RD

)4(4 ‖x− cD‖
RD

+ 1
)

and set
wD =

w̄D∑
D w̄D

.

5 Simulation results
We demonstrate the proposed method on the Stanford bunny model, taken from [1]
(Figure 1). We chose a model that has 8171 3D points, obtained with a laser scanner
from multiple directions and blended into a single model. For the sake of function
reconstruction, point normals have been discarded and points have been rescaled to fit
into a unit cube, centered around the origin. Noise of equal magnitude σ = 0.01 has
been used as measurement noise in all scaled 3D vector components x, y and z. As the
proposed local estimation scheme delivers parameter estimates up to sign (i.e. it makes
no decision as to which is the “inside” and the “outside” of the surface), the original



Points used (%) Sum of absolute error
40 98.5703
60 77.0111
80 60.9651

100 53.7400

Table 1: Consistency of the model reconstruction scheme.

normals have been used to obtain the proper sign but a simple method, such as the one
used in [6] could also have been applied. Simulations have been performed with the
Fræser errors-in-variables estimation and simulation framework [7], which is written
partly in MatLab and (for the sake of improved performance) partly in C and C++.

The consistency of the estimation scheme is illustrated by taking only a specific
proportion of the data points into account, constructing a model based on these randomly
selected points, and assessing accuracy on the entire noise-free data set. The results are
shown in Table 1. The sum of absolute error

e =
∑
i

|fr(x0,i)|

where fr : Rn → R is the reconstructed implicit function, shows a decreasing tendency
as a higher percentage of noisy data points is utilized.

6 Conclusion
We have proposed a method to reconstruct an unknown implicit function from a set of
noisy observations. The method approximates the zero-set of the function in a two-stage
process: (1) local estimates are computed with a consistent errors-in-variables estimator
over a compact domain, and (2) global estimates are combined from local estimates with
distance-based weight function. The method exhibits moderate computational complex-
ity owing to the iterative domain partitioning, yet has a fair accuracy inherited from
the local estimator that directly incorporates the errors-in-variables context into the es-
timation strategy. Future work includes more rigorous comparison of different global
estimation strategies that utilize the local errors-in-variables estimator and possible ap-
plication to dynamic systems.
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