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1 Results

Involutive uninorm algebras are (not necessarily integral) commutative residuated
lattices with an element f which defines an involution. In more detail:

Definition 1 I = (X, e, <. 1, T.e, f.} is called an inwolutive uninorm algebra if
1. C=1{X,<,1,T}is a bounded poset,

2. & iz a uninorm over C with neutral element e,

3 foreveryre X, r—, f=max{z € X | zez < f} exists, and

4. for every x € X, we have (2 —, f) =, f =2

It is not difficult to see that every involutive uninorm is residuated (see [10]) and hence e is isotone (see [6]).
Therefore, ' : X — X given hy
2 =r—,f

is an order-reversing involution.

If C is linearly ordered, we call I{ an involutive uninorm chain. I is called finete if X is a finite set.

By using the concept of skew pairs a structural description has been given for the
case when e=f and the underlying universe of the involutive uninorm algebra is a
complete and densely ordered chain [10]. In this paper we present some results for
the finite chain case.

For finite uninorm chains we define a new concept, the rank of the algebra as
follows:
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Definition 2 Consider a finite invelutive uninorm chain If and denote the cardinality of its universe by n.
Clearly, U is order-isomorphic to a finite involutive uninorm chain with universe {1,2,...,n} ¢ N, denote it by
{{1,2,...,n},8,<,1,n.e f). Call e — f the rank of &, It is easy to see that the rank is well-defined.

Standing assumption:
Because of the order-isomorphism which was mentioned in Definition 2, without loss of generality, in the sequel

we will consider finite involutive uninorm chains solely on the universe {1,2,...,n},” and will employ the shorter
notation

U= {L1,2,...,n},8,< e, )0

We have the following structural description.

Definition 3 For any involutive uninorm algebra U = (X, e, <, 1, T, e, f,) define

XtT={zeX|z>e} and X ={zeX|z<e}

Proposition 2 Let (X,e,<, 1, T,e, f,) be an involutive uninorm algebra, ® its underlying t-norm and @ its
underlying t-conorm acting on X+ and X, respectively. Then ® and @ uniguely determine e on X+ x X~ via

[ sy, fr<y
m-y—{(ya;x,y: o<y )

Corollary 1 If there are no elements in X which are incomparable with e in an involutive uninorm algebra
(X,e,<,L1,T,e, f,) then the underlying t-norm and t-conorm of @ uniquely determine e.

This structural description motivates the following construction.

Definition 5 Let ® be a t-norm on {1,2,...,e}, ® be a t-conorm on {e,e+1,...,n},and let ' =n+1-z
for z € {1,2,...,n}. Denote

Ug ={({1,2,...,n},e,<,e,f)

where
TRY fr,y<e
reu— TPy ifz,y=e )
v= (z—ay) fzzey<eandz<y)or(y>e xz<e andz <y)

(y—ge) flxzey<eandz>y)or(y>e x<e andz>y)

Consider a finite involutive uninorm chain U, = {{1,2,...,n},e,<,e, f} and denote its underlying t-norm
(which acts on {1,2,...,e}) and its underlying t-conorm (which acts on {e,e+1,...,n}) by ® and @, respectively.
By Corollary 1 we have U, = U@?,

Call an involutive uninorm T-L-indecomposable if [2,n-1] (that is, we remove top and
bottom from the underlying universe) is not a subalgebra of it.

The following two theorems hold true.

Theorem 1 We have that & is the monoidal operafion of a fintte involutive uninorm chain with rank = 0
(resp. rank = 1} iff n is odd (resp. n is even) and

[ min{x,y) Fr<y
r"q_{ max(z,y), ifz >y ®)
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Theorem 2 There is a one-to-one correspondence between T_L-indecomposable involutive uninorms with rank
n—1

2 on n-element chains and conerm operalions on "5~ -element chains given as follows:
Let © be the t-norm operation on {1,2,..., "zﬂ} given by

1 if 2,y < 252
TOY= { min(z,y) otherwise ’ (13)

1. For any involutive uninorm on {1,...,n} with rank = 2, its underlying t-norm is equal to .

2. For any conorm operation & on {nzj, "TH +1,...,n}, the monoidal operation of US’ is an involutive uninorm
on {1,...,n} with rank = 2.
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