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Abstract: An autonomous robot with vertical take-off and landing (VTOL) capability could 
be useful for many applications including search and rescue, exploration in hazardous 
environments, monitoring, surveillance and investigation or even for intelligence. However 
design of a flight control system for a small UAV is a challenging task. Unlike in 
conventional aircrafts the control algorithm has to be implemented in a size limited 
processing environment and has to cope with smaller mechanical time constants and noisy 
inertial sensor data. This paper introduces the methodology used in the development of an 
experimental unmanned quad-rotor helicopter, explores the limits of the linear LQG 
controller used in the design and for improvement suggests the emerging SDRE nonlinear 
control design method.  

Keywords: unmanned aerial vehicles, UAV, VTOL, flight-control system quad-rotor 
helicopter, embedded control, optimal control, LQR, LQG, state-dependent Riccati 
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1 Introduction 

Being efficient information collecting gadgets UAVs are getting more and more 
attention not only in modern warfare but in our everyday life. The main reason is 
protection of human life. Lost of an unmanned machine shows up only on a 
damage report. Besides, the absence of onboard human presence permits 
operational condition and environment beyond the capabilities of piloted 
airplanes. As a result UAVs can operate even in circumstances endangering life 
such as high g maneuvers, toxic gases or radioactive environment etc. Another 
motivating factor is cost. Considering price, maintenance and training of pilots 
unmanned aerial vehicles are less expensive than piloted ones [1][2].  

Aircrafts having vertical take-off and landing capability form a special group 
among UAVs. These – usually rotary-wing – aircrafts do not require large areas to 
become airborne therefore they can support mid range monitoring, surveillance, 
investigation or even intelligence and reconnaissance operations. Recent advances 
in sensing, data processing and control technology have made it possible to 
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develop small VTOL aerial robots able to operate in urban areas or even inside 
buildings. Along with cost and size reduction – that made these systems very 
attractive for many applications – challenging control and performance problems 
emerged. The miniaturized inertial sensors are less efficient than the conventional 
sensors because of noise and drift, and also the small actuators suffer from 
saturation. Therefore designing flight control system of mini or micro UAVs is 
still a challenging goal. This complex design task is demonstrated in this material 
via a control system of an experimental unmanned quad-rotor helicopter [3][4][5]. 

2 The Quad-Rotor UAV 

Recently a number of research groups are again investigating the problem of 
developing a small four-rotor helicopter design. A single rotor helicopter is very 
dangerous in an indoor or obstacle bounded environment because of the potential 
for the exposed rotor blades to collide with something and cause the helicopter to 
crash. Even skilled pilots have trouble navigating them close to the outside of 
buildings. Four-rotor helicopters are attractive because the rotors are smaller and 
can be enclosed, making them safer. Also, it may be possible to achieve more 
stationary hovering with four thrust forces acting at a distance from the centre of 
gravity than with one force acting through the centre of gravity. A small electrical 
four-rotor helicopter owing to its mechanical simplicity can be a robust and 
reliable VTOL UAV construction. 

To facilitate the job of the pilot, it is rewarding to automate some functions of the 
UAV. Manually stabilizing the flight of a four-rotor helicopter by means of 
controlling the speed of the four rotors is almost impossible. Accordingly the use 
of an onboard autopilot is necessary to utilize this construction in UAV 
applications. Besides, the autopilot can provide stable platform for onboard 
imaging sensors and opportunity to accomplish out of sight operations.  

In order to design a stabilizing flight control system an adequate mathematic 
model has to be determined that mimic the real, physical behavior of the 
helicopter. This model is derived using equations of rigid body dynamics: 
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As shown if Figure 1 Equation 1 describes the linear motion of a rigid body in 
inertial frame (K0) and the rotational motion in body frame (K) where the vectors 
are r(t) – position, v(t) – velocity, ω(t) – angular velocity, F(t) – force, M(t) – 
torque, and the matrices are Φ(t) – rotation, ω (t) – angular velocity,  J – inertia 
tensor, and m the mass. To utilize Equation 1 the mass properties, the forces and 
torques acting on the body have to be determined [6][7][8]. 

 
Figure 1 

Quad-rotor helicopter with inertial and body frames 

The mass of the fuselage or its components can be measured with a precision 
scale, but the determination of the inertia tensor can be complicated because of the 
complex structure of the helicopter. Therefore it is beneficial to utilize the 
capabilities of CAD systems. After designing the helicopter body in a mechanical 
engineering CAD environment the inertia tensor can be easily approximated with 
a built in tool as shown in Figure 2 and 3. This tool can compute the mass 
properties even complicated shapes [9].     

 
Figure 2 

Quad-rotor helicopter in CAD environment 
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Figure 3 

Mass properties of the quad-rotor helicopter 

The torque is derived from differential thrust associated with pairs of rotors along 
with aerodynamic and gyroscopic effects. The thrust and drag generated by a 
single rotor can be modeled as a quadratic function of the propeller speed. With 
these assumptions the dynamic model can be stated as 
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where the lift and the aerodynamic torque is  
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and the torque due to gyroscopic effect is  
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where d, Cf, Cr, Jre are constants, and Ω1,2,3,4 are the angular velocities of the rotors. 

The electrical motors driving the rotors can be modeled with the well-known DC-
motor dynamics [10]: 
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If the mechanical time constant of the controlled electric motor is much smaller 
than the mechanical time constant of the controlled helicopter – which is desirable 
– the angular velocities of the rotors can be treated as inputs to the helicopter 
instead of the input voltages of the DC-motors. Therefore the complexity of 
dynamic model of the whole system is reduced. Accordingly the mathematical 
model of a quad-rotor helicopter – introducing the Euler angles – has the 
following form [11]: 
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3 Onboard Electronics 

The onboard electronics consist of a central processing unit (IMU), an inertial 
measurement unit, an ultrasonic height sensor, a duplex radio transceiver, an RC 
receiver, a power stage and a power supply (Figure 4). 

To provide sufficient signal processing capability the central processing unit is 
based on a TMS320F28335 32 bit microcontroller and on a Spartan 3 FPGA 
device that communicate via a dual port SRAM implemented in the FPGA. 

The IMU module consists of 3 accelerometers, 3 gyroscopes and 3 magnetometers 
with built in sensor fusion algorithm. The ultrasonic height sensor can provide 
measurements with 1 cm accuracy. 

The helicopter can communicate with a ground station via a duplex radio link 
while the manual control is implemented as a conventional RC receiver-controller 
combination [11].  

 
Figure 4 

Block diagram of the onboard electronics 

4 Controller Design 

After determining the mathematical model, our task is to design a controller which 
makes our closed-loop system 

- stable, 
- follow the reference signal, 
- minimize the effect of external disturbances, 
- filter the internal disturbances, 
- insensitive to parameter uncertainties, 
- meet other requirements. 
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It is usually hard to satisfy all these – often contradictory – requirements since our 
model is only an approximation of the reality. We are not aware all the effects and 
cannot measure all the disturbances. Besides to keep the model manageable we 
have to use simplifications. Therefore only well-founded controller design can 
guarantee adequate closed-loop system. 

Control theory of linear systems has a long and fruitful history. It has elaborated, 
simple and powerful tools with a mass of successful practical implementations. 
Therefore it is a common practice in engineering to use linear models and linear 
control design methods. However, linearization of a highly nonlinear model alone 
is often not sufficient. The linearized model can only predict the local behavior of 
the nonlinear system in the neighborhood of an operating point. Besides, there are 
essentially nonlinear phenomena that cannot be described by linear models. 
Accordingly we should use the analysis and control theory of nonlinear systems 
[12][13].  

4.1 LQG Controller 

The tools of optimal control theory can be effectively used with multi-input multi-
output linear systems of the form: 

x Ax Bu

y Cx

= +

=
                      (7) 

Control design is called “optimal control” when a specified condition is satisfied. 
But optimality cannot be interpreted globally; it is just with respect to that certain 
predefined criterion. Considering optimal Linear Quadratic Regulator (LQR) used 
here, the overall performance of the resulting closed-loop system is dependent on 
the suitability of the chosen Q, R weighting matrices in the quadratic criterion: 
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Hence the choice of an appropriate criterion is crucial in optimal control theory.  

The optimal state feedback gain that minimizes the cost functional in Equation 8 
can be obtained from the solution of the following equation 

T T 1 TA P P A Q PBR B P 0−+ + − =                 (9) 

that is known as the algebraic Riccati-equation. The optimal feedback gain is then 
1 T

optK R B P−= .                    (10) 

To implement the closed loop system all the state variables have to be available 
(Figure 5). However, in practice it is sometimes impossible or impractical to 
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measure all the state values. Even in the exceptional case that we are able and 
willing to measure all states we have to deal with measurement noise. In this case 
we should use state estimator. 

 
Figure 5 

Full state-feedback LQR controller 

The state estimation starts from the nominal linear system model with 
uncorrelated, zero mean state disturbance w(t) and measurement noise υ(t) 

x Ax Bu Gw

y Cx υ= +

= + +
                  (11) 

where Qw and Rυ are the covariance matrices of the corresponding stochastic 
signals:  
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The block diagram of the well-known Kalman-filter is depicted in Figure 6. The 
estimation would be best, if the difference ˆx(t) x(t) x(t)= −  of the real x(t)  and 
the estimated x̂(t)  state variables were minimal. Hence, the optimality criterion of 
a Linear Quadratic Estimator (LQE) can be stated as  

{ }TE x(t)x (t) min=                  (13) 

The optimal error feedback matrix L can be obtained if we solve the correspondig 
Riccati-equation: 

T T T 1
wAP PA GQ G PC R CP 0−

υ+ + − =              (14) 

From the solution P the steady state error feedback matrix is 
T 1

optL PC P−
υ= .                   (15) 
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Figure 6 

Block diagram of the Kalman-filter 

It is easy to observe the similarity between the optimal controller and optimal state 
estimator problem. With the following dual transformations the solution is 
completely equivalent:       

A = AT,   Q = Qw,   B = CT,   R = Rυ,   K = LT,    P = P. 

The derived controller and estimator above can be put together to form a Linear 
Quadratic Gaussian (LQG) controller shown in Figure 7.  

 
Figure 7 

Block diagram of the complete LQG controller 
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The state feedback is accomplished as if the estimated state variables were the real 
ones. It is the separability principle of the LQG regulator: the LQR and LQE 
problem can be decoupled [14][15][16]. 

In order to apply linear control design technique to the quad-rotor helicopter the 
linear approximation of the nonlinear system (Equation 6) has to be linearized in 
the vicinity of steady state hovering. In the neighborhood of this operating point 
the following linear model can be derived: 
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With this model, and with the appropriate weighting matrices, the optimal state 
feedback gain can be computed. With the probability properties of the state 
disturbance and the measurement noise the optimal state estimator gain can also 
be determined. After extensive simulations and analysis of test flights the given 
LQG controller implemented in the onboard electronics shown in section 2 can 
stabilize the near hover flight of experimental quad-rotor helicopter even in the 
presence of disturbing tosses. However, the system can only recover from roll and 
pitch angles smaller than 30 degrees due to the linear approximation. On the other 
hand, the slow horizontal drifting can not be measured with the noisy onboard 
inertial sensors therefore this effect has to be corrected manually during flight. 
Without more accurate or additional sensors the drifting can not be reduced to an 
acceptable level, therefore position regulation is not possible with this electronics 
[11]. 
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4.2 SDRE Controller 

Over the past several years, a lot of research effort has concentrated on nonlinear 
controller synthesis and analysis theory. The inability of linear controller design 
techniques to handle strongly nonlinear system dynamics has accelerated the 
development of methods such as feedback linearization, gain-scheduling, 
recursive backstepping, adaptive control etc. Also, a state-dependent Riccati 
equation (SDRE) technique has recently proposed for control of nonlinear 
dynamic systems. This method can be interpreted as a nonlinear counterpart of the 
LQR design with state dependent system and weighing matrices. Therefore the 
quadratic optimality criterion to be minimized 

( )
0

T T

t

1
J x Q(x)x u R(x)u dt

2

∞

= +∫               (17) 

is also dependent on the states. Since the SDRE method approaches the controller 
design problem by mimicking the LQR formulation for linear systems, the general 
nonlinear state equation has to be rewritten in a pointwise linear structure called 
state-dependent coefficient (SDC) form:     

x f (x, u) x A(x)x B(x)u= → = +              (18) 

This parameterization is possible if and only if f(0) = 0 and f(x) is continuously 
differentiable. Additionally the A(x), B(x) pair has to be pointwise controllable for 
all x in the linear sense to ensure that the state-dependent Riccati equation 

T 1 TA (x)P(x) P(x)A(x) P(x)B(x)R (x)B (x)P(x) Q(x) 0−+ − + =      (19) 

has a solution for every point in the state-space. The state feedback matrix that is 
also state-dependent here becomes: 

1 Tu K(x)x R (x)B (x)P(x)x−= − = −              (20) 

Unlike LQR design for linear systems the SDRE control can only guarantee local 
asymptotic stability. Since the explicit closed-loop system equations are usually 
not known for SDRE controlled systems, the global stability analysis is quite 
difficult and still an open issue. However, simulation and experiment results show 
wide range of applicability, good stability performance and due to its LQR nature 
inherent robustness characteristics of the SDRE method. 

For a given nonlinear system there may be several possible SDC forms that result 
in poinwise stabilizable matrix pair A(x), B(x). The choice among them influences 
the overall performance of the controller in the same way as the choice of the 
weighing matrices which are also allowed to be function of the states. This 
flexibility can be utilized in the controller design. 
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To implement the SDRE controller one has to solve the state-dependent Riccati 
equation in every sampling interval. The analytical solution is only possible for 
lower order systems or for systems with special structure. Otherwise numerical 
algorithms have to be used that demand more computational resources than 
conventional control algorithms. For example the Schur-method conventionally 
used to solve algebraic Riccati equations requires approximately 75n3 floating 
point operations. Hopefully the computational power of modern computers is 
more than enough to cope with this task although for embedded processing some 
important issue has to be considered. Since the computational cost is of 
polynomial growth rate and the choice of the sampling rate is critical, for stability 
sufficient signal processing capacity has to be available onboard [17][18][19].       

Conclusions 

In this paper the onboard electronics and the implemented linear quadratic 
regulator design of an experimental quad-rotor helicopter is presented. It is 
concluded that without more precise or additional sensors the horizontal drift in 
the position can not be reduced. Therefore with inaccurate inertial sensor data 
position control is not a possibility. Besides to cope with the nonlinear phenomena 
of the helicopter dynamics a nonlinear controller design approach has to be 
considered. Theoretical and experimental results suggest that the characteristics of 
the SDRE method are adequate for a wide range of nonlinear dynamic systems 
including unmanned aerial vehicles.     
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