
AMORsim − A Mobile Robot Simulator for Matlab 

Toni Petrinić, Edouard Ivanjko, Ivan Petrović 

Department of Control and Computer Engineering, Faculty of Electrical 
Engineering and Computing, University of Zagreb 

Unska 3, HR-10000 Zagreb, Croatia 
E-mail: toni.petrinic@gmail.com, edouard.ivanjko@fer.hr, ivan.petrovic@fer.hr 

Abstract: In the development of mobile robot control algorithms the researchers 
are often faced with the problem of ensuring safety operation of used mobile robot 
during the real mobile robot experiment phase. For this reason implemented 
control algorithms have to be firstly tested in various simulation scenarios. 
Appropriate simulation tools have to enable easy creation of different simulation 
setups, usage of different sensors, collection and evaluation of sensor 
measurements, examination of noise influence, etc. This paper describes a 
developed simulation tool for such a purpose – AMORsim (Autonomous MObile 
Robots simulator), a mobile robot simulator that’s able to simulate a three-
wheeled user-defined mobile robot in a two-dimensional environment. It’s written 
in Matlab, which is a common, and well-known simulation environment. 

Keywords: Mobile robot, Simulation, Matlab 
 
 

I INTRODUCTION 

When developing control algorithms 
for mobile robots or any other 
expensive/complex systems, a 
simulation tool is often of significant 
importance in order to reduce 
development time, avoid damages due 
control algorithm failure, find errors in 
the implemented control algorithm, 
etc. A software simulation can be 
easily manipulated and monitored and 
is offering access to data that are hard 
to measure on a real mobile robot. 
Also different mobile robot types can 
be tested with no need of significant 
adaptations of the tested algorithm. An 
algorithm that proved to be successful 
in simulation has a good chance to be 
successful when implemented on a real 
mobile robot. The experiments on a 
real system must also be done because 

simulators provide only a simplified 
model of a real robot and its 
environment, that often doesn't take 
into account problems like process 
noise, real behavior of sensors, etc. 
Many mobile robot manufactures offer 
simulators of their products but they 
are often limited in the capabilities. 
System and non-system error 
simulation is missing or can’t be 
adjusted; external tools have to be used 
for data evaluation; etc. Also they 
don’t enable access to real 
measurements, which makes them not 
suitable for education purposes 
because many students have problems 
understanding the difference between 
real, measured and estimated values, 
for example. 
The AMORsim (Autonomous MObile 
Robots simulator) simulator 



development was started at the 
Department if Control and Computer 
Engineering in order to take the 
mentioned drawbacks into account and 
to alleviate mobile robotics courses to 
students [1]. Matlab was taken as the 
platform of choice because it’s a high-
featured and user friendly environment 
for technical computing such as 
graphical user interface building, 
modeling, simulation, algorithm 
development, data analysis and 
graphical presentation of collected data 
[2]. It also offers a programming 
language, which is suitable for 
algorithm implementation without the 
need for complicated variable 
definition and memory allocation like 
in the C/C++ programming language. 
This allows students to focus more on 
the problem that has to be solved than 
on the program implementation. 
In the following sections we give a 
short overview of current available 
mobile robot simulators and then 
describe the AMORsim simulator. 

II EXISTING SIMULATORS 

In the past, several mobile robot 
simulators have been developed. Most 
of them are written in C/C++. The 
main disadvantages of simulators 
written in C/C++ is that people have to 
posses a good programming 
knowledge in order to do some 
changes or to adapt the simulator to 
their particular needs. Also for some 
more advanced data processing like 
operation with matrices appropriate 
libraries have to be used. Some 
examples of existing simulators are: 
Stage [3], Khepera [4] and 
SIMROBOT [5]. 
Stage simulator can simulate one or 
more mobile robots in a two-
dimensional environment. Various 

sensor models are provided, including 
sonar, laser range finder, a pan-tilt-
zoom camera, and odometry. This 
simulator comes with some predefined 
robot models such as the Pioneer 2DX 
and the Segway RMP. It also offers the 
possibility of creating and integrating 
own robot models as plug-ins but this 
has to be done by code-based 
modeling in C/C++. 
Khepera simulator simulates one or 
more Khepera mobile robots in a two-
dimensional environment. The mobile 
robot is equipped with 8 infrared 
sensors, which is the only type of 
implemented sensor. There is no 
possibility of creating own mobile 
robot models. The user can write own 
control algorithms in the C/C++ 
language. A Matlab interface is also 
available. 
SIMROBOT is a mobile robot 
simulator for Matlab. It has been 
developed as part of a diploma thesis 
at the Department of Control, 
Measurement and Instrumentation, 
Faculty of Electrical Engineering and 
Computer Science, Brno University of 
Technology. It simulates one or more 
mobile robots in a two-dimensional 
environment. The user can write own 
control algorithms and setup sensors 
parameters for each mobile robot. 
There are two types of implemented 
range sensors - sonar and laser range 
finder. This simulator fulfils some of 
the mentioned requirements and as 
such it is used as the starting point for 
AMORsim development. 

III THE AMORSIM MOBILE 
ROBOT SIMULATOR 

When we used the above-mentioned 
simulators, they showed fairly limited 
options for education purposes. None 
of them had options to display the true 



 

Figure 1 
AMORsim graphical user interface 

and estimated mobile robot pose, to 
visually present what happens with 
range measurements when a pose drift 
occurs, to present data available to an 
operator using a control unit to control 
the mobile robot, include systematic 
and non-systematic errors 
simultaneously enabling students an 
easy implementation of localization, 
mapping, path planning and obstacle 
avoidance algorithms. Whence our 
department owns a Pioneer 2DX 
mobile robot [6], we needed also a 
development environment for this 
three wheeled mobile robot that 
contains the above mentioned features 
and is more suitable for students 
without a very good knowledge of the 
C/C++ programming language. 
To meet these requirements the 
following steps were performed. A 
model of the Pioneer 2DX mobile 

robot was created. The kinematic 
model corresponds to a three cycle 
mobile robot with two drive wheels 
and one castor wheel for stability [7]. 
Modeled sensors are drive wheels 
encoders, compass, gyroscope, sonar, 
and laser range finder. Every sensor 
measurement can be corrupted whit 
white Gaussian noise. To include a 
presentation of a teleoperation unit the 
application window was divided into a 
mobile robot section and a control 
section (Fig. 1). The mobile robot 
section presents the simulated mobile 
robot location in the simulation 
environment, and the control section 
presents data available to a 
teleoperator in case of a real mobile 
robot (estimated pose, measured 
velocities and orientation, range 
measurements). In this way the 
students can observe the pose drift, 



 
Figure 2 

Graphical interface for systematic and non-systematic error definition 

range measurements that don’t mach 
the obstacle that caused them, and 
different values of real/measured/ 
estimated values. To allow a manual 
mobile robot motion control a 
keyboard interface and appropriate 
buttons are implemented. 
In order to model systematic and non-
systematic pose errors two mobile 
robot kinematics models are used. One 
presents the simulated mobile robot 
and uses kinematic models with all 
parameters exactly known. Resulting 
data is presented in the mobile robot 
section. The second one uses a 
kinematic model with nominal 
parameters and noisy measurements. 
Resulting data is presented in the 
control section. 
The simulation consists of the 
following stages. First the true pose is 
computed. Then noise is added to 
drive velocities and using these noisy 
measurements the estimated pose is 
computed. The discrepancy from the 
nominal parameters and measurement 
noise values can be changed in a 
dialog box shown in Fig. 2. To present 
the difference between real, measured 
and estimated values all real 

uncorrupted values are made available 
(real mobile robot pose, drive wheel 
velocities, etc.). Furthermore, this 
allows plotting of the real and 
estimated mobile robot trajectory after 
simulation end and comparison of 
implemented localization algorithms 
quality. 
Range sensors measurements are 
simulated using the Bresenham’s 
algorithm [8]. Detection of obstacles 
in the simulation is based on detection 
of a cell at a given location in the 
occupancy grid simulation 
environment map with value ’1’. 
Value ’1’ in the occupancy grid map 
means that this environment part is 
occupied and ’0’ means that’s free. To 
alleviate the collision detection the 
internal occupancy grid map, that’s 
also used for the visual representation 
can take a third value (’2’) to denote 
that the mobile robot occupies this 
particular cell. If the mobile robot 
collides with an obstacle, it’s stopped. 
Collision detection is done using 
overlap checking i.e. if any part of the 
mobile robot overlaps with an 
occupied grid cell, collision is 
detected. These routines are written in 



10 20 30 40 50 60 70 80 90 100
45.5

46

46.5

47

47.5

48

48.5

49

 x position [mm]

 y
 p

os
iti

on
 [m

m
]

MOBILE ROBOT POSITION

true position

estimated position

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 time steps

 tr
an

sl
at

io
na

l s
pe

ed
 [m

m
/s

]

MOBILE ROBOT TRANSLATIONAL SPEED

 estimated translational velocity

 true translational velocity

a) b)

Figure 3 
Mobile robot position (a) and translational speed (b) during simulation 

C/C++ and then compiled into a 
dynamically linked library (a Matlab 
’mex’ file) to ensure their faster 
execution during simulation. 
Simulated environment model can be 
loaded in two formats. First format 
presents an occupancy grid map saved 
in a two-bit bitmap file and second 
format presents a feature map saved in 
a line based ’wld’ model [6]. The 
occupancy grid map can so be created 
in any graphical editor, it just have to 
be saved as a black/white bitmap 
image and the feature map can be 
created in any textual editor. Only line 
features are used in the feature map 
and they are defined by line begin and 
end x, y Cartesian coordinates. When a 
feature map based simulation 
environment is loaded into the 
simulator an appropriate occupancy 
grid model is created, with the cell size 
automatically set to 1 [mm]. 
The simulation is done with fixed time 
steps without any dynamics included. 
In each time step first the mobile robot 
control algorithm is executed 
(implemented as a standard ’m’-
function), and motion commands (left 
and right drive wheel velocities) are 
sent to the simulated mobile robot. 
Motion commands are the result of 
manual mobile robot control or of a 

navigation algorithm execution 
implemented as part of the mobile 
robot control algorithm. Then using 
the sent motion commands new mobile 
robot pose is computed, and using the 
new pose sensors reading are updated. 
At the end every time step the 
simulator window is redrawn. If the 
mobile robot collided with an obstacle, 
control algorithm execution is stopped. 
During simulation, all relevant data 
such as true and estimated pose, true 
and measured data (range, orientation, 
rotation speed) are stored in text files 
for off-line analysis. Total time of one 
simulation step is equal to the time 
needed to execute all described 
actions. 

IV SIMULATION EXAMPLE 

The simulator includes two 
independent applications - Editor and 
Simulator, which allows the user to 
create and/or modify a simulation and 
then run it. 
The Editor application is started with 
the command ’’createsim’’ from 
Matlab. It allows the user to create a 
new or to modify an existing 
simulation setup. Creation or 
modification of a simulation setup 
includes creation/loading of a 
simulation environment map, mobile 



robot model, or a control algorithm, 
and assignment of an initial mobile 
robot pose. The simulation setup can 
be saved and then loaded next time or 
just started using the ’run’ menu 
command. Previously saved simulation 
setups can be directly loaded and 
started. 
The Simulator application allows the 
user to run a previously created and 
loaded simulation (Fig. 1). It’s started 
with the command ’runsim’ from 
Matlab or from the editor part using 
’run’. During simulation relevant data 
are presented in the simulation 
window and also saved for evaluation. 
Example of collected sensor data is 
presented in Fig. 3. 

Conclusion 

A mobile robot simulator for Matlab is 
presented in this paper. Its visual 
appearance and algorithm 
implementation is adapted in order to 
represent the crucial problems in the 
field of mobile robotics to students in a 
more friendly way. It also provides a 
simple development environment for 
testing and implementation of mobile 
robotics related algorithms appropriate 
for students or researchers with poor 
C/C++ knowledge. 
Future work will include a module for 
adding models of other mobile robot 
drive systems, like Ackerman or 
synchro drive. Apart from this, a 
module for collected data analysis, as 
well as a library of basic algorithms 
for localization, mapping, path 
planning and obstacle avoidance will 
be added. In order to achieve a more 
realistic simulation of real world 
conditions, ability of defining moving 
obstacles will also be considered. 

 

Acknowledgement 

This research has been supported by 
the Ministry of Science and 
Technology of the Republic of Croatia 
under grant No. 0036018. The authors 
also thank Marija Seder and Andreja 
Kitanov for their helpful suggestions 
and comments. 

References 

[1] Toni Petrinić: Implementation of 
navigation algorithms in mobile 
robot simulator for Matlab (in 
Croatian), diploma thesis No. 
1451, University of Zagreb, 2005 

[2] Matlab: Creating Graphical User 
Interfaces, The MathWorks Inc., 
2005 

[3] Richard T. Vaughan: Stage: a 
multiple robot simulator, 
Technical Report IRIS-00-394, 
University of Southern 
California, 2000 

[4] Oliver Michel: Khepera 
Simulator Package version 2.0, 
http://diwww.epfl.ch/lami/team/
michel/khep-sim/SIM2.tar.gz 

[5] Jakub Hrabec: Autonomous 
mobile robotics toolbox 
SIMROBOT, http://www.uamt. 
feec.vutbr.cz/robotics/simulations
/amrt/simrobot.zip 

[6] Pioneer 2 Operations Manual, 
ActivMedia Robotics, LLC, 2000 

[7] P. Muir: Modeling and Control of 
Wheeled Mobile Robots, doctoral 
dissertation, Technical Report 
CMU-RI-TR-88-20, Robotics 
Institute, Carnegie Mellon 
University, August, 1988 

[8] Tom Ootjers: Line Drawing 
Algorithm Explained, 
http://www.gamedev.net/referenc
e/articles/article1275.asp 


