
The ZeeRO Mobile Robot – A Modular Architecture

Gheorghe Lazea1, Radu Bogdan Rusu1, 2, Radu Robotin1, Romulus
Sime

1 Robotics Research Group, Department of Automation
Technical University of Cluj-Napoca, C. Daicoviciu 15, Cluj-Napoca, Romania

E-mail: {gheorghe.lazea; radu.rusu; radu.robotin}@aut.utcluj.ro
2 Intelligent Autonomous Systems, Computer Science Department

Technische Universität München, Boltzmannstr. 3, Munich, Germany
E-mail: rusu@cs.tum.edu

Abstract: This paper presents the general architecture of the ZeeRO mobile robot,
with an emphasis on its main modules: navigation, sensors and data processing.
The interface with the Player server that allows simulations in 2D (Stage) or 3D
(Gazebo) is also presented. The last part of the paper presents some applications
for this mobile robot, some of the performed tests and also some of the future
plans for the extension of the current architecture.

Keywords: mobile robot architecture, Player server, Gumstix, sensor data
processing

I INTRODUCTION

The “ZeeRO” mobile robot was
developed by the Robotics Research
Group in the Automation Department,
Technical University of Cluj-Napoca.
The aim of the project was to design a
low-cost, modular structure (Open
System Architecture) mobile robot,
that allows further extensions. The
robot was designed to be embedded in
individual applications (i.e. static or
dynamic environment navigation), but
also in a more comprehensive system,
easy to integrate with existing robots
(Pioneer 2 and Pioneer 3) in
cooperative applications.
The system uses the Player/Stage
platform [3], and integrates new high
level functions and algorithms, thus
making the mobile robot
programmable in a variety of
programming languages (Java, C/C++,

Lisp, Python, etc). Figure 1 shows the
mobile robot architecture. The central
processing unit uses a distributed
architecture with a distinct separation
between high level functions (master)
and low level operations (slave).

Figure 1

The ZeeRO architecture

The link with other mobile robots, but
also the communication between the
ZeeRO mobile robot and a PC is

wireless, therefore providing a higher
degree of autonomy and flexibility to
the overall system. The design aim for
the sensors module was a reliable data
acquisition system that could facilitate:
obstacle detection and avoidance,
color spot detection, human (or any
warm object) detection and following,
as well as support for map building
and collision avoidance.

II THE NAVIGATION
MODULE

The ZeeRO mobile robot is a two
wheels differential drive vehicle. The
two servomotors are directly
controlled by a component of the
central processing unit. Two additional
servomotors can be found in the
CMUcam2’s pan-tilt unit. They are
directly controlled by the SX52
microcontroller (up to 5 servomotors
can be controlled). The robot motion
control parameters are x and y, that is
the position of the center of the wheel
axis, and θ, that is the orientation of
the mobile robot with respect to the
horizontal X axis (see Figure 2). These
parameters are determined as a
function of time, using:

() () () ()()

() () () ()()

() () ()

0

0

0

1 cos
2

1 sin
2

1

t

d s

t

d s

t

d s

x t v t v t t dt

y t v t v t t dt

t v t v t dt
l

θ

θ

θ

⎧
⎡ ⎤= + ⋅ ⋅⎪ ⎣ ⎦

⎪
⎪
⎪ ⎡ ⎤= + ⋅ ⋅⎨ ⎣ ⎦
⎪
⎪
⎪ ⎡ ⎤= − ⋅⎣ ⎦⎪
⎩

∫

∫

∫

(1)

The set () ()(), ,x t y t tθ⎡ ⎤⎣ ⎦ determines the
position and the orientation of the
mobile robot at time t, starting at the
initial conditions []0 0 0, ,x y θ . The equation
(1) was determined based on the
forward kinematics of the robot, that
is:

[]
c c

c c

x x xx
y R y y y

tθ ωθ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2)

where R is the rotational matrix, given
by:

() ()
() ()

cos sin 0
sin cos 0

0 0 1

t t
R t t

ω ω
ω ω

⎡ ⎤⋅∂ − ⋅∂
⎢ ⎥= ⋅∂ ⋅∂⎢ ⎥
⎢ ⎥⎣ ⎦ (3)

The last equation describes the rotation
of the mobile robot around point C
(center of curvature – see Figure 2)
with the angular velocity, ω , while vd
and vs are the velocities of the right
and left wheel, given by:

2

2

d

s

lv R

lv R

ω

ω

⎧ ⎛ ⎞= ⋅ +⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ = ⋅ −⎜ ⎟⎪ ⎝ ⎠⎩

 (4)

where R is the curvature radius and l is
the distance between wheels.

Figure 2
Motion robot parameters

Two special cases of motion are
encountered:
• Forward motion, the orientation

for the start configuration is the
same as the orientation for the
target configuration (s tθ θ=) and
the velocities of the two wheels
are identical (d sv v v= =)

• The robot turns around point O
(the robot turns in place), d sv v= − .

The locomotion module uses two
servomotors, modified for continuous

motion (see Figure 3 - Modified
Servomotor – 111 OZ - In).

Figure 3
Brainstem GP1.0 board and servomotors

The motors are PWM controlled, with
a period of 20 ms, the rotation angle
being determined by the pulse width.
For example, a pulse width of 1.5 ms
determines a 90 degrees rotation in the
motor shaft (see Figure 4).

Figure 4
Rotation angle function of the command pulse

width

The servomotors were transformed
into continuous motion motors (see
Figure 5) by replacing the feedback
sensor with a resistor array, that will
transmit a signal to the motor similar
to the one sent by the feedback sensor
when the motor shaft is at 90 degrees.
As a result, if a signal for 0 degrees
motor positioning is applied, the motor
will rotate with maximum speed in one
direction, or, if a signal for 180
degrees motor positioning is applied,
the motor will rotate in the reverse
direction with maximum speed. Thus,
by removing the feedback sensor the
motor behaves as if the shaft would be

at 90 degrees and will continuously
rotate in one direction as long as the
command signal persists.

Figure 5

Servomotor with feedback sensor (left) and with
resistor array (right)

The motors are controlled using
Brainstem GP1.0 (see Figure 3), built
around a 40MHz RISC processor. The
Brainstem GP1.0 module uses an 8-bit
value to control the position of the
servomotor and allows fine tuning of
the parameters for the PWM command
signal at each sample. A command
value of 128 will stop both motors,
while a command value of 0 or 255
will rotate the motors with maximum
speed in one direction (0 for left and
255 for right). This is achieved by
using configuration commands for the
output of the Brainstem GP1.0 board.
The programming of the two modified
servomotors includes: configuration
(through software), motor
programming (using TEA – Tiny
Embedded Application, Assembler or
C) and trajectory control routines.

5 6 7 8 9 10 11 12 13 14 15
150

160

170

180

190

200

210

220

230

240

250

velocity [cm/s]

di
gi

ta
l c

om
m

an
d

(8
 b

its
)

Figure 6

Command signal function of desired linear
velocity

5 6 7 8 9 10 11 12 13 14 15
−5

0

5

10

15

20

velocity [cm/s]

Co
m

m
an

d
dif

fe
re

nc
e

Figure 7
Difference in command signals in function of

the desired linear velocity

The two motors are not synchronized
at the same command signal. This
means that the motors will have
different velocities at the same
command signal and, therefore the
robot will have a trajectory deviation.
A relation between the command
signal and the velocity has to be found.
Figure 6 and Figure 7 show
experimental results for one direction.

III THE SENSORS MODULE

The role of the sensors module is to
acquire data for various navigation
controlling algorithms (see Figure 8).

PLAYER

RS232

Video
camera

Infrared

Sonar

Pyroelectric

Motor
commands

CLIENT

Sensor
data

processing

Motor
commands
generator

Control
Algorithm

RS232

ROBOT

Figure 8
Client and PLAYER module diagram

The following type of sensors are part
of the ZeeRO mobile robot’s sensorial
system:
• 2 IR sensors (Sharp GP2DO2)

with an operating range between
10 and 80cm;

• 4 Ultrasonic sensors (2
Devantech SRF08 and 2 SRF10)

with an operating range between
3 cm and 6 m and an accuracy of
±3 cm;

• 1 Pyro-electrical sensor
(Acroname ELTEC 442-3);

• 1 CMUcam2 video camera (CCD
OV6620 sensor and SX52
processing board) connected via
RS232 with the main processing
unit.

More in-depth information about the
sensorial system can be found in [1],
and [4].

IV THE PROCESSING UNIT

Figure 9 shows the connections
between the main elements of the
central processing unit. The Gumstix
Waysmall provides the high level layer
while the Brainstem GP1.0 and
Brainstem Moto1.0 represent the low
level layer.

Figure 9
Central processing unit connections

The Gumstix Waysmall is an
embedded device, based on Intel’s
PXA255 XScale processor, operating
at 400 MHz, with 64 Mb RAM and 4
Mb Flash memory. Gumstix is
powered by the Linux operating
system. The Brainstem GP1.0 is built
around a 40MHz RISC processor. It
provides 5 10bit analog/digital input

channels, 5 digital I/O lines, an I2C
interface, 4 servomotor outputs, 1 IR
port, and a RS232 serial port. The
Brainstem Moto1.0 is also built around
a 40MHz RISC processor. It provides
2 PWM controlled channels, 1 analog
/digital (10bit) input channel, 1 digital
I/O channel, an I2C interface, a RS232
serial port, and a H-bridge connector.
For the ZeeRO mobile robot, the
Brainstem network comprises one GP
module and one Moto module (see
Figure 9), stacked together via I2C (up
to 126 modules can be connected).
This approach provides several
advantages:
- support for communication

between the modules;
- only one serial connector is used to

interface the network with the PC;
- only one power supply is used for

the network, the Moto module
being supplied via the GP module.

V THE PLAYER/STAGE
ARCHITECTURE

The development of the Player/Stage
project was started at the University of
Southern California, USA (1998) [3],
and later (2001) moved to
SourceForge. Player/Stage has two
main components: the server
component (Player), which provides
an interface for the mobile robot
(sensors and actuators) and the
simulator component (initially Stage,
for 2D simulations, and later Gazebo
for 3D).
The Player/Stage system runs on a
variety of operating systems: Linux,
MacOS, *BSD, etc. Figure 10 presents
the global architecture using the server
(Player) and client applications
(physical devices and 2D and 3D
simulators).

B
u
ff

e
r

Data

Command

Data

Command

Multi-thread
server

Client
C1...Cn

PLAYER

Robot

Stage

Gazebo

Simulator

In
te

rf
a
c
e

Figure 10

The Player server architecture

Player uses a client-server model
based on the TCP (or UDP) protocol,
thus enabling the client applications to
be implemented using almost any
programming language. Furthermore,
the client may run on any computer
that is connected to a network where
the Player server runs.
The developers of the Player project
[3] have made a clear separation
between the “programming interface”
and the control structure. The Player
server is implemented in C++ using
standard POSIX pthread functions to
provide support for multithreading.
Each client uses a TCP/UDP socket in
order to connect to the Player server. If
both the client and server are on the
same computer, the connection will be
a loop-back. On the other hand, Player
connects to physical devices, most of
the time using RS232 (see Figure 8).
Numerous enhancements have been
added to the Player/Stage project since
its initial release on SourceForge. The
last version (currently, 2.0.1) supports
a wide variety of sensors and
actuators, as well as well-known
mobile robots. The community has
grown rather large and the code
repository is being supported by an
international community of robotics
researchers.
As Figure 10 shows, Player receives
information from the mobile robot
(which can be a real mobile robot or a

simulated one) usually through the
serial port. This data is processed by
the Player driver and then it is made
available to the client. The approach is
flexible, new devices may be added,
either as a module in the Player server
or as a dynamic link library that Player
will load before running the client.

Results, Conclusion and Further
Work

The ZeeRO mobile robot (Figure 11)
is the result of this research project,
still under development. The mobile
robot was tested under several
conditions, including: obstacle
detection, human detection (or heat
detection using the pyro-electrical
sensor), detection and follow of a color
blob (using the CCD sensor),
navigation in static and dynamic real
environments. Navigation applications
in simulated environments (Stage and
Gazebo) where also developed.
Currently, we are researching the use
of cooperative applications for multi-
robot systems (using Robotux[2]).

Figure 11

The ZeeRO mobile robot

Further work on this project will be
focused on extending the sensorial

system, increasing the performances of
the locomotion module and the sensor
data fusion algorithms.

References

[1] Radu Bogdan Rusu. Modern
architectures for mobile robots:
Javaclient and ZeeRO.
Dissertation thesis for Advanced
Postgraduate Studies, June 2005

[2] Radu Bogdan Rusu, Liviu Miclea,
and Szilard Enyedi. Robotux – a
multi-agent robot based security
system. In Proceedings of IEEE-
TTTC Automation, Quality &
Testing, Robotics International
Conference 2004, Cluj-Napoca,
Romania, May 13-15, 2004,
AQTRJ

[3] B. P. Gerkey, R. T. Vaughan, A.
Howard, - The Player/Stage
project: Tools for Multi-robot and
Distributed Sensor Systems, in
Proceedings of the International
Conference on Advanced Robotics
(ICAR), Coimbra, pp. 317-323,
2003

[4] Sime Remus. A sensorial system
for the ZeeRO mobile robot.
Diploma thesis, June 2005

[5] Radu Robotin and Gheorghe
Lazea. Path planning in an
unknown environment. In
International Conference A&QT-
R, 23 May 2002, Cluj-Napoca,
Romania, Vol. II, p. 83

