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Abstract: This paper presents the general architecture of the ZeeRO mobile robot, 
with an emphasis on its main modules: navigation, sensors and data processing. 
The interface with the Player server that allows simulations in 2D (Stage) or 3D 
(Gazebo) is also presented. The last part of the paper presents some applications 
for this mobile robot, some of the performed tests and also some of the future 
plans for the extension of the current architecture. 
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I INTRODUCTION 

The “ZeeRO” mobile robot was 
developed by the Robotics Research 
Group in the Automation Department, 
Technical University of Cluj-Napoca. 
The aim of the project was to design a 
low-cost, modular structure (Open 
System Architecture) mobile robot, 
that allows further extensions. The 
robot was designed to be embedded in 
individual applications (i.e. static or 
dynamic environment navigation), but 
also in a more comprehensive system, 
easy to integrate with existing robots 
(Pioneer 2 and Pioneer 3) in 
cooperative applications. 
The system uses the Player/Stage 
platform [3], and integrates new high 
level functions and algorithms, thus 
making the mobile robot 
programmable in a variety of 
programming languages (Java, C/C++, 

Lisp, Python, etc). Figure 1 shows the 
mobile robot architecture. The central 
processing unit uses a distributed 
architecture with a distinct separation 
between high level functions (master) 
and low level operations (slave). 

 
Figure 1 

The ZeeRO architecture 

The link with other mobile robots, but 
also the communication between the 
ZeeRO mobile robot and a PC is 



wireless, therefore providing a higher 
degree of autonomy and flexibility to 
the overall system. The design aim for 
the sensors module was a reliable data 
acquisition system that could facilitate: 
obstacle detection and avoidance, 
color spot detection, human (or any 
warm object) detection and following, 
as well as support for map building 
and collision avoidance. 

II THE NAVIGATION 
MODULE 

The ZeeRO mobile robot is a two 
wheels differential drive vehicle. The 
two servomotors are directly 
controlled by a component of the 
central processing unit. Two additional 
servomotors can be found in the 
CMUcam2’s pan-tilt unit. They are 
directly controlled by the SX52 
microcontroller (up to 5 servomotors 
can be controlled). The robot motion 
control parameters are x and y, that is 
the position of the center of the wheel 
axis, and θ, that is the orientation of 
the mobile robot with respect to the 
horizontal X axis (see Figure 2). These 
parameters are determined as a 
function of time, using: 
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The set ( ) ( )( ), ,x t y t tθ⎡ ⎤⎣ ⎦  determines the 
position and the orientation of the 
mobile robot at time t, starting at the 
initial conditions [ ]0 0 0, ,x y θ . The equation 
(1) was determined based on the 
forward kinematics of the robot, that 
is: 
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where R is the rotational matrix, given 
by: 
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The last equation describes the rotation 
of the mobile robot around point C 
(center of curvature – see Figure 2) 
with the angular velocity, ω , while vd 
and vs are the velocities of the right 
and left wheel, given by: 
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where R is the curvature radius and l is 
the distance between wheels. 

 

Figure 2 
Motion robot parameters 

Two special cases of motion are 
encountered: 
• Forward motion, the orientation 

for the start configuration is the 
same as the orientation for the 
target configuration ( s tθ θ= ) and 
the velocities of the two wheels 
are identical ( d sv v v= = ) 

• The robot turns around point O 
(the robot turns in place), d sv v= − . 

The locomotion module uses two 
servomotors, modified for continuous 



motion (see Figure 3 - Modified 
Servomotor – 111 OZ - In). 

 

Figure 3 
Brainstem GP1.0 board and servomotors 

The motors are PWM controlled, with 
a period of 20 ms, the rotation angle 
being determined by the pulse width. 
For example, a pulse width of 1.5 ms 
determines a 90 degrees rotation in the 
motor shaft (see Figure 4). 

 

Figure 4 
Rotation angle function of the command pulse 

width 

The servomotors were transformed 
into continuous motion motors (see 
Figure 5) by replacing the feedback 
sensor with a resistor array, that will 
transmit a signal to the motor similar 
to the one sent by the feedback sensor 
when the motor shaft is at 90 degrees. 
As a result, if a signal for 0 degrees 
motor positioning is applied, the motor 
will rotate with maximum speed in one 
direction, or, if a signal for 180 
degrees motor positioning is applied, 
the motor will rotate in the reverse 
direction with maximum speed. Thus, 
by removing the feedback sensor the 
motor behaves as if the shaft would be 

at 90 degrees and will continuously 
rotate in one direction as long as the 
command signal persists. 

 
Figure 5 

Servomotor with feedback sensor (left) and with 
resistor array (right) 

The motors are controlled using 
Brainstem GP1.0 (see Figure 3), built 
around a 40MHz RISC processor. The 
Brainstem GP1.0 module uses an 8-bit 
value to control the position of the 
servomotor and allows fine tuning of 
the parameters for the PWM command 
signal at each sample. A command 
value of 128 will stop both motors, 
while a command value of 0 or 255 
will rotate the motors with maximum 
speed in one direction (0 for left and 
255 for right). This is achieved by 
using configuration commands for the 
output of the Brainstem GP1.0 board. 
The programming of the two modified 
servomotors includes: configuration 
(through software), motor 
programming (using TEA – Tiny 
Embedded Application, Assembler or 
C) and trajectory control routines. 
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Figure 6 

Command signal function of desired linear 
velocity 
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Figure 7 
Difference in command signals in function of 

the desired linear velocity 

The two motors are not synchronized 
at the same command signal. This 
means that the motors will have 
different velocities at the same 
command signal and, therefore the 
robot will have a trajectory deviation. 
A relation between the command 
signal and the velocity has to be found. 
Figure 6 and Figure 7 show 
experimental results for one direction. 

III THE SENSORS MODULE 

The role of the sensors module is to 
acquire data for various navigation 
controlling algorithms (see Figure 8). 
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Figure 8 
Client and PLAYER module diagram 

The following type of sensors are part 
of the ZeeRO mobile robot’s sensorial 
system: 
• 2 IR sensors (Sharp GP2DO2) 

with an operating range between 
10 and 80cm; 

• 4 Ultrasonic sensors (2 
Devantech SRF08 and 2 SRF10) 

with an operating range between 
3 cm and 6 m and an accuracy of 
±3 cm; 

• 1 Pyro-electrical sensor 
(Acroname ELTEC 442-3); 

• 1 CMUcam2 video camera (CCD 
OV6620 sensor and SX52 
processing board) connected via 
RS232 with the main processing 
unit. 

More in-depth information about the 
sensorial system can be found in [1], 
and [4]. 

IV THE PROCESSING UNIT 

Figure 9 shows the connections 
between the main elements of the 
central processing unit. The Gumstix 
Waysmall provides the high level layer 
while the Brainstem GP1.0 and 
Brainstem Moto1.0 represent the low 
level layer. 

 

Figure 9 
Central processing unit connections 

The Gumstix Waysmall is an 
embedded device, based on Intel’s 
PXA255 XScale processor, operating 
at 400 MHz, with 64 Mb RAM and 4 
Mb Flash memory. Gumstix is 
powered by the Linux operating 
system. The Brainstem GP1.0 is built 
around a 40MHz RISC processor. It 
provides 5 10bit analog/digital input 



channels, 5 digital I/O lines, an I2C 
interface, 4 servomotor outputs, 1 IR 
port, and a RS232 serial port. The 
Brainstem Moto1.0 is also built around 
a 40MHz RISC processor. It provides 
2 PWM controlled channels, 1 analog 
/digital (10bit) input channel, 1 digital 
I/O channel, an I2C interface, a RS232 
serial port, and a H-bridge connector. 
For the ZeeRO mobile robot, the 
Brainstem network comprises one GP 
module and one Moto module (see 
Figure 9), stacked together via I2C (up 
to 126 modules can be connected). 
This approach provides several 
advantages: 
- support for communication 

between the modules; 
- only one serial connector is used to 

interface the network with the PC; 
- only one power supply is used for 

the network, the Moto module 
being supplied via the GP module. 

V THE PLAYER/STAGE 
ARCHITECTURE 

The development of the Player/Stage 
project was started at the University of 
Southern California, USA (1998) [3], 
and later (2001) moved to 
SourceForge. Player/Stage has two 
main components: the server 
component (Player), which provides 
an interface for the mobile robot 
(sensors and actuators) and the 
simulator component (initially Stage, 
for 2D simulations, and later Gazebo 
for 3D). 
The Player/Stage system runs on a 
variety of operating systems: Linux, 
MacOS, *BSD, etc. Figure 10 presents 
the global architecture using the server 
(Player) and client applications 
(physical devices and 2D and 3D 
simulators). 
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Figure 10 

The Player server architecture 

Player uses a client-server model 
based on the TCP (or UDP) protocol, 
thus enabling the client applications to 
be implemented using almost any 
programming language. Furthermore, 
the client may run on any computer 
that is connected to a network where 
the Player server runs. 
The developers of the Player project 
[3] have made a clear separation 
between the “programming interface” 
and the control structure. The Player 
server is implemented in C++ using 
standard POSIX pthread functions to 
provide support for multithreading. 
Each client uses a TCP/UDP socket in 
order to connect to the Player server. If 
both the client and server are on the 
same computer, the connection will be 
a loop-back. On the other hand, Player 
connects to physical devices, most of 
the time using RS232 (see Figure 8). 
Numerous enhancements have been 
added to the Player/Stage project since 
its initial release on SourceForge. The 
last version (currently, 2.0.1) supports 
a wide variety of sensors and 
actuators, as well as well-known 
mobile robots. The community has 
grown rather large and the code 
repository is being supported by an 
international community of robotics 
researchers. 
As Figure 10 shows, Player receives 
information from the mobile robot 
(which can be a real mobile robot or a 



simulated one) usually through the 
serial port. This data is processed by 
the Player driver and then it is made 
available to the client. The approach is 
flexible, new devices may be added, 
either as a module in the Player server 
or as a dynamic link library that Player 
will load before running the client. 

Results, Conclusion and Further 
Work 

The ZeeRO mobile robot (Figure 11) 
is the result of this research project, 
still under development. The mobile 
robot was tested under several 
conditions, including: obstacle 
detection, human detection (or heat 
detection using the pyro-electrical 
sensor), detection and follow of a color 
blob (using the CCD sensor), 
navigation in static and dynamic real 
environments. Navigation applications 
in simulated environments (Stage and 
Gazebo) where also developed. 
Currently, we are researching the use 
of cooperative applications for multi-
robot systems (using Robotux[2]). 

 
Figure 11 

The ZeeRO mobile robot 

Further work on this project will be 
focused on extending the sensorial 

system, increasing the performances of 
the locomotion module and the sensor 
data fusion algorithms. 
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