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Abstract: Recent results in retinal research have shown that neighboring 
receptive fields on the mammalian retina have very little overlap. Traditional 
computerized edge-filtering methods, in contrast, rely greatly on the overlapping 
structure of artificial receptive fields. This paper presents a new edge-filtering 
model characterized by non-overlapping receptive fields. Artificial nystagmic eye 
movements are also incorporated in the model in order to achieve receptive field 
overlaps through time. It will be shown that these two elements combined yield 
results similar in quality to previous models, but also achieve a reduction in the 
amount of stored information, similar in proportion to the reduction discovered 
between the retina and the optic nerve of the human vision system. 
 
 

I INTRODUCTION 

Traditional image-filtering artificial 
receptive fields, such as Laplace and 
Sobel fields, work reliably only when 
assuming an architecture with overlaps 
in receptive fields. Using edge-
filtering methods widely available 
today without any overlap in receptive 
filters results in a vast number of 
undesirable blind spots. 
Recent findings in cognitive 
physiology suggest that receptive 
fields of mammalian photoreceptor 
cells do not overlap [4]. The model 
proposed in this paper uses a non-
overlapping receptive field 
architecture enhanced with artificial 
nystagmuses in order to make up for 
losses in information. The image is 
moved around randomly at a steady 
rate, thus an overlap is achieved 
between receptive fields with time. 
Averaging receptive field responses at 
given time intervals produces an effect 

similar to that observed when using 
overlapping receptive fields, but 
computation time and the amount of 
handled information is greatly 
reduced. The positive effects of the 
model can be used efficiently in real-
time systems with demanding time 
constraints. 
The paper is structured as follows: in 
an introductory section, an overview is 
given on the biological elements which 
served as an inspiration for this model. 
Further sections treat the details of the 
model, along with test results. 

II BIOLOGICAL OVERVIEW 

The three major kinds of eye 
movements widely accepted today are 
microsaccades, drifts and tremors (also 
referred to as nystagmuses) [7]. 
Microsaccades are abrupt jerks in 
fixation. These jerks take about 25 ms, 
and have amplitudes of several 
hundred receptive fields. 



 
Figure 1 

Mathematical model of biological receptive 
fields used in the model 

Recent findings confirm that saccades 
have a key role in higher-order, 
cortical object recognition [3, 6]. 
Drifts and tremors both occur between 
microsaccades. Tremors are 
involuntary, rhythmic oscillations of 
the eye, that have frequencies of about 
90 Hz and amplitudes of roughly the 
diameter of a cone on the fovea 
(therefore the diameter of the smallest 
of photoreceptor cells). 
Drifts are a unidirectional wandering 
of the eye, and are much slower than 
nystagmuses, but wider in amplitudes. 
The role of these three kinds of eye 
movements in perception is still 
unresolved, however, all three tend to 
have an importance in maintaining 
visual acuity [5, 2]. 
Artificially eliminating these 
movements, researchers found that 
vision faded away. One possible 
explanation for this is that ganglion 
cells seem to become fatigued when 
receiving the same stimulus over a 
certain amount of time. 
Of the three eye movements 
introduced above, this paper 
concentrates on nystagmuses. The 
model for edge-detection proposed 
here, uses non-overlapping receptive 
fields, but also incorporates tremors in 
order to achieve the effects of 
overlapping receptive fields through 
time. 

 
Figure 2 

Edge-detected image using Laplace method (a) 
and the same image, edge-detected without 

overlaps in receptive fields (b) 

It will be shown that besides following 
the structure of human visual 
perception, the model accounts for the 
13:1 information reduction ratio 
characteristic to the pathway between 
photoreceptor cells of the retina and 
ganglion cells [8]. 

III MODEL 

In order to achieve its goal, the 
proposed edge-filtering model uses 
artificial receptive fields that are 
structurally similar to those found on 
the retina. Although it uses the 
biological vision system as a guideline, 
some apparent differences can be 
found. 
One major difference between the 
model and the human vision system is 
that while receptive fields in the model 
have a constant size throughout the 
image, the size of receptive fields on 
the retina gradually grows larger going 
from the central, foveal areas, to the 
peripheral areas (this is why foveal 
areas are said to be more sensitive to 
detail, while peripheral areas tend to 
be more sensitive to motion). This 
approximation is justified because the 



model is used for the filtering of edges 
in still images, not for detecting abrupt 
temporal changes in moving images. 
In this paper, 3-by-3 artificial receptive 
fields will be used. 

3.1 Receptive Field Structure 

Receptive fields are represented by 
two-dimensional matrices (as in many 
previous models), each matrix value 
representing a weight with which the 
corresponding stimulus is 
multiplied. The configuration of 
weights depends on the type of 
receptive field being modeled; on-
center fields have positive values in 
the central area, surrounded by all 
negative weights, while off-center 
fields contain a central negative value, 
surrounded by all positive weights. 
The weighting used in this model 
approximates an operator that 
calculates the second derivative of the 
image, and in this respect, resembles 
the Laplace-operator (Figure 1). 
Because the Laplace-operator tends to 
be sensitive to noise, we demonstrate 
the need for overlaps in receptive 
fields using another typical operator, 
the Sobel-operator. Figure 2 shows an 
edge-filtered image using the original 
Sobel method, as well as the case 
where receptive fields are used in a 
non-overlapping manner. The losses in 
information are clear. 
In order to reconcile the differences 
between brain physiology research and 
traditional edge-filtering methods, 
artificial nystagmuses were introduced 
to the model. Such rapid oscillations 
are capable of achieving overlaps in 
receptive fields through time. Main 
parameters of the model include 
nystamgus amplitude (A) and 
frequency (Φ). The function yielding 

the edge-filtered image can be 
expressed as follows: 

Φ
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where λ is the on-centered Laplace-
operator shown in figure 1, and Shift is 
a function that translates the image 
both horizontally and vertically, by a 
random amount of pixels calculated 
using random seed RandSeed. The 
original image and the Laplacian are 
matrix convoluted Φ times, and the Φ 
samples are then averaged. This 
mulitple sampling strategy has a 
positive effect in noise reduction. 

IV TEST RESULTS 

In testing the model, optimal results 
were received when setting Φ to a 
value greater than 30, and A to a value 
around 5, but not more than 10. 
Greatly increasing Φ does not have 
negative effects on edge-detection 
(only on computing time), however, a 
deterioration in results can be observed 
when increasing A. Figures 3, 4 and 5 
show results received when varying 
the two parameters. 
The optimality of the values stated 
above can be confirmed by a simple, 
empirical evaluation method. This 
method states that the information (or 
detail) contained in an image is 
directly proportional to the percentage 
of its non-white pixels. Our 
assumption is that false edges are not 
detected by the model, because drastic 
increases in Φ do not imply an 
unbounded blackening of the image. 
Figure 6 shows the average percentage 
of black pixels in terms of Φ and A. 
The choice of Φ > 30 also seems 
justified because the human eye is 
supposed to produce around 90 
nystagmuses per second, thus for every 



3 saccade. Intersaccadic intervals are 
evenly distributed, each of them take 
about (1000 - 3*25)/3 = 308.33 ms [7], 
of which the eyeballs are stable for 
250 ms [1]. This implies that each 
intersaccadic interval should have 1/3 
of of the 90 nystagmuses allotted for 
each second. 
There is also biological support for 
choosing A to be between 5 and 10: 
tremors usually have amplitudes of the 
diameter of a cone on the fovea (3 in 
our case). 

Conclusion 

A novel method for edge-detection 
was proposed. The model used was 
based upon previous edge-filtering 
methods as well as recent discoveries 
in cognitive physiology. 

Because of the non-overlapping 
receptive field architecture used, the 
obtained edge-filtered image is 
reduced in size compared to the 
original image. The application of 3-
by-3 receptive fields reduces the 
original image by a ratio of 3 along 
each of its dimensions. The model 
does not take into account the fact that 
receptive fields on peripheral areas of 
the retina are larger than foveal 
receptive fields. An enlargement of 
peripheral receptive field areas in 
terms of pixels would approximately 
account for the 13:1 reduction ratio 
present in the human vision system. 
Through test results, the sensitivity of 
obtained results in terms of the model's 
variable parameters was treated. 
 

 
Figure 3 

Edge-detected image received when setting A to 5 and varying the value of Φ 

 
Figure 4 

Edge-detected image received when setting A to 10 and varying the value of Φ 



Figure 5 
Edge-detected image received when setting A to 20 and varying the value of Φ 

 
The obtained results compete with the 
best filtering techniques used today. 
Because of this and the size reduction 
discussed above, the model can be 
used efficiently in robot systems with 
real-time demands. 

 
Figure 6 

The percentage of non-white pixels in terms of 
Φ and A 
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