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Abstract: In this paper dynamics and control of two cooperating planar rigid 
robots handling a flexible beam are presented. Each robot has three revolute 
joints. The boundary conditions of the beam are considered as clamped-clamped 
model. First, kinematics and dynamics of the system and the relation between 
different forces acting on the object using different Jacobians are derived. To 
obtain the dynamic equations of motion of the object, its Lagrangian has been 
developed and then Lagrange’s equations are derived. Second, an I-type 
impedance control is elaborated that causes the position and orientation of the 
mass center of the beam converge to their desired values while suppressing the 
vibration of the beam. The simulation results show the efficiency of the considered 
control scheme for this type of boundary conditions. 
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I INTRODUCTION 

Dual arm manipulation of flexible 
objects is a complex and challenging 
problem and has recently attracted a 
lot of attention due to its potential 
applications in industry. Chen and 
Zheng studied coordinating of two 
grippers to handle deformable object 
[1]. Svinin et a1. [2] applied the 
geometrical analysis to perform the 
position control and vibration 
suppression of the flexible object. In 
their research, the flexible object was 
consisted of lumped masses and 
springs. Zheng et al. [3] examined the 
position control of flexible objects. 
Their purpose was to insert the flexible 
object’s one end into a hole in concrete 
while holding the other end. Yukawa 

and Uchiyama dealt with the problem 
of handling an end of the flexible 
object by a robot while the other end 
was fixed in the wall [4]. Sun and Liu 
studied a more general case: handling 
a flexible object with an arbitrary 
shape [5]. Tanner and Kyriakopoulos 
viewed a manipulated deformable 
object as an underactuated mechanical 
system [6]. They discussed 
controllability and constraints issues of 
an important class of deformable 
objects being modeled by finite 
element. Jiang and Kohno dealt with 
the issues of vibration measurement 
and control design in order to establish 
flexible objects manipulating system 
using industrial robot arms [7]. 
Doulgeri and Peltekis considered a 
rectangular object grasped by two 



robot fingers with spherical end 
effectors that are allowed to roll along 
the object surface [8]. 
In this paper, two planar robots, each 
with three revolute joints, grasping and 
handling a flexible beam by clamped-
clamped model are considered (Fig. 1). 
The motion of the beam is combined 
of its rigid body motion and vibration 
of the beam. The vibration of the beam 
is taken into account with respect to 
the rigid body motion and modeled by 
mode summation procedure where we 
should consider the mode shapes and 
natural frequencies of the clamped-
clamped beam. 
The proposed control for this purpose 
is I-type impedance that does not 
require any information about the 
vibration of the beam. The underlying 
idea of impedance control is to assign 
a prescribed dynamic behavior for a 
robot manipulator while its end 
effector is interacting with the 
environment. The desired performance 
is specified by a generalized dynamic 
impedance, i.e., by a complete set of 
linear or nonlinear second-order 
differential equations representing a 
mass-spring-damper system. Using 
programmable stiffness and damping 
matrices in the impedance model, a 
compromise is reached between 
contact force and position accuracy as 
a result of unexpected interaction with 
the handled object. Also, to achieve a 
desired dynamic characteristic 
between the manipulator and the 
object at the contact the inverse 
dynamics control is combined with 
impedance control, that is, the 
imposition of desired impedance at the 
end-effector level will be obtained by 
an inverse dynamic scheme [9]. 
At the end the simulation results show 
that the proposed dynamics and 

control for clamped-clamped model is 
a convenient choice. 

II KINEMATICS 

A Coordinate Frames 
To analyze motion of beam elements, 
five principal coordinate frames are 
considered: F1and F2, the inertial 
coordinate frames of robot manipulator 
bases, Fg1 and Fg2, the frames of 
grippers at the contact points with the 
object, and F0, the mobile frame that is 
attached to rigid object and its origin is 
at the mass center of the beam. We 
will write all of the equations with 
respect to the reference frame F1. The 
deformation of the flexible beam is 
modeled as relative displacement with 
respect to the mobile frame. 
B Robots Kinematics 
The kinematics of each robot can be 
easily developed by using rotation 
matrices and translation vectors of the 
links. We consider r1and r2 as the 
position and orientation vectors from 
reference frame to the robots grippers. 
If we consider J1 and J2 as the Jacobian 
matrices and q1 and q2 as the joint 
variables vectors of robot 1 and robot 
2, respectively, we can write 

111 qJr && = , 222 qJr && =  (1) 
Assembling equations (1) we can write 

qJr && =  (2) 

C Beam Kinematics 
We consider a beam with length l, 
moment inertia oI and mass 

Almo ρ= where ρ and A denote the 
mass density and area of cross section 
of the beam respectively. 
For any point on the beam, the 
transverse deflection ),( tsw and the 
slope ),( tsw′  are approximated by 



finite series of assumed modes, 
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where s denotes the normalized 
curvilinear coordinate of the rigid 
beam in the range of 0 to l. )(skΦ is 
the kth mode shape of the flexible 
beam corresponding to its boundary 
conditions and )(skΦ′ is its derivative 

with respect to s. )(tkξ is the kth 
generalized coordinate representing 
the contribution of the kth mode shape 
in the flexible motion. We consider 

1w and 2w  as the deformation of the 
beam at the two ends (s=0, l) and 

1w′ and 2w′  the corresponding slops. 
For the clamped-clamped model we 
have 

021 == ww  and 021 =′=′ ww  
The position vector from reference 
frame to a point on the beam is 
considered as Tyxp ][= . The 
kinematics equations of a beam point 
position x and y , can be written as 

)sin()cos( θθ wvxx o −+=  (4) 
θθ wcvsyy o ++=  (5) 

where T
ooo yxp ][= shows the 

position of rigid body motion of the 
mass center of the beam and 

2/llsv −= . 
Considering [ ]Too pr θ=  as the 
position and orientation of the rigid 
body motion of mass center of the 
object, under clamped-clamped 
boundary conditions we can write 

T
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where 
)cos(θθ =c  and )sin(θθ =s . 

Differentiating equation (6) we can 
write 
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where )(θR′ is a 36×  matrix and 
)(θR is a )3(6 m+× one. 

III DYNAMICS 

A Robots Dynamics 
The dynamic equation of robot i can 
be written as 
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Figure 1 
Two robot manipulators handling a flexible 

beam 

where )( ii qM , ),( ii qqC & and 
)( ii qG denote the inertia matrix, 

Coriolis effects matrix and 
gravitational vector of robot i. 

iu and if  are the applied torque vector 
at joints of robot i and interaction force 
between robot i and the beam. 



Assembling dynamic equations of two 
robots we can write 

fJuqGqqqCqqM T+=++ )(),()( &&&&  (9) 

B Beam Dynamics 
To obtain beam dynamics we use 
Lagrange’s method. For this, first, we 
should drive kinetic and potential 
energies of the beam under rigid body 
motion and vibration of the elements 
of the beam. The kinetic energy T of 
the beam can be written as 
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Differentiating equations (4) and (5) 
and substituting in equation (10), we 
can write 

ξθξξ

ξθ

&&&&

&&

)(
2
1

),(
2
1

WrM

rMrT

T
oq

T

oo
T

o

++

=  (11) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
−
−

=
ξξαξαξ

αξ
αξ

θθ

θ

θ

q
T

o

o

o

o

MIsc
sm
cm

M 0
0

  

⎥⎦
⎤

⎢⎣
⎡
∫ Φ=
l

kq dssAdiagM
0

2)]([ρ  (12) 

TTTT csW ][ βαα θθ−=  
in which 

∫ Φ=
l

dssA
0

)(ρα  (13) 

∫ Φ−=
l

dsslsA
0

)()2/(ρβ  (14) 

The elastic potential energy of the 
beam is defined as 
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and EI is the beam bending stiffness. 

Applying Lagrange equation and 

considering TTT
orX ][ ξ= , the 

equation of motion of the beam can be 
written as 

fRCXXBXA T )(θ−=++ &&& , (17) 
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IV IMPEDANCE CONTROL 

One may decompose the forces and 
moments at the contact points to 
internal and external forces. External 
forces ef  are those that contribute to 
rigid motion of the beam and internal 
forces If  contribute only to vibration 

of the beam. if  should be 
decomposed to internal and external 
forces as ieIi fff

i
+= . Since ef  has 

no contribution to the rigid body 
motion it can be written as 
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and TT
e

T
ee fff ][

21
=  where )(tci is 

the distribution factor. 
To achieve a desired dynamic 
characteristic for the interaction 
between the manipulator and the 
object at the contact points, we should 
consider two steps. The first step 
decouples and linearizes the closed-
loop dynamics in task space 
coordinates using inverse dynamics 
algorithm [9]. In the second step, the 
desired impedance model that 
dynamically balances contact forces at 



the manipulator end effector is chosen. 
For the second step,  

Ie fff +=  (20) 

We let ef  satisfy 

rKrKrMf pvee Δ++= &&&  (21) 

where eM , eC and eK are the desired 
inertia, damping and stiffness matrices, 
and drrr −=Δ where rd is the 
desired position of the end-effectors 
corresponding to the desired position 
of the mass center of the beam. We let 

If be an I-type force feedback as: 
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where dλ is the desired internal force 

magnitude, fK is positive definite 

matrix, dλλλ −=Δ  and 
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ief is derived from (19). 
Considering equations (21) and (22), f 
is written as 
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Solving equation (23) for r&&  and 
substituting into equation (9), the 
control low is derived as 
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V SIMULATION RESULTS 

In the simulation, we have considered 
two planar robots, each with three 
revolute joints. These two robots are 
handling a flexible beam that moves 

from initial position and orientation of 
]07.12.2[=or  to the desired 

position and orientation of 
]2.35.132.2[=dr . The area 

cross section and length of the beam 

are (.001
2m ) and (1.5 m), 

respectively. The elastic modulus and 
density of the beam are (100 GPa) and 
(30000 kg/m). Each link of the robots 
has weight of (1.5 kg) and length of (1 
m). The initial conditions of the 
deflection of the beam and its time 
derivative have been considered to be 
zero. The controller gains are 
considered as 66×= IM e , 

6648 ×= IKv , 66200 ×= IK p . 
Figure 2 shows the errors of the rigid 
motion vs. time where first two curves 
represent the position error and the 
right curve shows the orientation error. 
Also, Figure 3 shows the flexible 
coordinates of the beam vs. time. It 
can be seen from Figures 2 and 3 that 
the rigid body motion errors as well as 
the flexible coordinates converge to 
zero. 

Conclusion 

This paper presented an approach for 
transporting a flexible beam by two 
manipulators to a desired position/ 
orientation while suppressing its 
vibration and controlling the internal 
forces. The model of clamped-clamped 
boundary conditions was discussed. 
The vibration of the beam was 
modeled by using 6 assumed modes. A 
hybrid impedance control algorithm 
was utilized by combining impedance 
control and an I-type force feedback 
into one scheme. Simulations results 
demonstrate the usefulness and 
efficiency of the proposed method. 



Figure 2 
Errors of the rigid body coordinates vs. time 

Figure 3 
The flexible coordinates vs.time 
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