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Abstract: In this paper dynamics and control of two cooperating planar rigid
robots handling a flexible beam are presented. Each robot has three revolute
joints. The boundary conditions of the beam are considered as clamped-clamped
model. First, kinematics and dynamics of the system and the relation between
different forces acting on the object using different Jacobians are derived. To
obtain the dynamic equations of motion of the object, its Lagrangian has been
developed and then Lagrange’s equations are derived. Second, an I-type
impedance control is elaborated that causes the position and orientation of the
mass center of the beam converge to their desired values while suppressing the
vibration of the beam. The simulation results show the efficiency of the considered
control scheme for this type of boundary conditions.
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| INTRODUCTION

Dual arm manipulation of flexible
objects is a complex and challenging
problem and has recently attracted a
lot of attention due to its potential
applications in industry. Chen and
Zheng studied coordinating of two
grippers to handle deformable object
[1]. Svinin et al. [2] applied the
geometrical analysis to perform the
position  control and vibration
suppression of the flexible object. In
their research, the flexible object was
consisted of lumped masses and

and Uchiyama dealt with the problem
of handling an end of the flexible
object by a robot while the other end
was fixed in the wall [4]. Sun and Liu
studied a more general case: handling
a flexible object with an arbitrary
shape [5]. Tanner and Kyriakopoulos
viewed a manipulated deformable
object as an underactuated mechanical
system [6]. They discussed
controllability and constraints issues of
an important class of deformable
objects being modeled by finite
element. Jiang and Kohno dealt with
the issues of vibration measurement

springs. Zheng et al. [3] examined the
position control of flexible objects.
Their purpose was to insert the flexible
object’s one end into a hole in concrete
while holding the other end. Yukawa

and control design in order to establish
flexible objects manipulating system
using industrial robot arms [7].
Doulgeri and Peltekis considered a
rectangular object grasped by two



robot fingers with spherical end
effectors that are allowed to roll along
the object surface [8].

In this paper, two planar robots, each
with three revolute joints, grasping and
handling a flexible beam by clamped-
clamped model are considered (Fig. 1).
The motion of the beam is combined
of its rigid body motion and vibration
of the beam. The vibration of the beam
is taken into account with respect to
the rigid body motion and modeled by
mode summation procedure where we
should consider the mode shapes and
natural frequencies of the clamped-
clamped beam.

The proposed control for this purpose
is I-type impedance that does not
require any information about the
vibration of the beam. The underlying
idea of impedance control is to assign
a prescribed dynamic behavior for a
robot manipulator while its end
effector is interacting with the
environment. The desired performance
is specified by a generalized dynamic
impedance, i.e., by a complete set of
linear or nonlinear second-order
differential equations representing a
mass-spring-damper system. Using
programmable stiffness and damping
matrices in the impedance model, a
compromise is reached between
contact force and position accuracy as
a result of unexpected interaction with
the handled object. Also, to achieve a
desired dynamic characteristic
between the manipulator and the
object at the contact the inverse
dynamics control is combined with
impedance control, that is, the
imposition of desired impedance at the
end-effector level will be obtained by
an inverse dynamic scheme [9].

At the end the simulation results show
that the proposed dynamics and

control for clamped-clamped model is
a convenient choice.

I KINEMATICS

A Coordinate Frames

To analyze motion of beam elements,
five principal coordinate frames are
considered: F,and F,, the inertial
coordinate frames of robot manipulator
bases, Fq and Fg, the frames of
grippers at the contact points with the
object, and Fo, the mobile frame that is
attached to rigid object and its origin is
at the mass center of the beam. We
will write all of the equations with
respect to the reference frame F;. The
deformation of the flexible beam is
modeled as relative displacement with
respect to the mobile frame.

B Robots Kinematics

The kinematics of each robot can be
easily developed by using rotation
matrices and translation vectors of the
links. We consider riand r, as the
position and orientation vectors from
reference frame to the robots grippers.
If we consider J; and J, as the Jacobian
matrices and g; and ¢, as the joint
variables vectors of robot 1 and robot
2, respectively, we can write

h=J:G. F,=J,0, @
Assembling equations (1) we can write
r=1Jq @)

C Beam Kinematics
We consider a beam with length I,
moment  inertia | jand  mass

m, = pAl where pand A denote the

mass density and area of cross section
of the beam respectively.
For any point on the beam, the

transverse deflection W(S,t)and the
slope W'(s,t) are approximated by



finite series of assumed modes,

WD) = 0,40

W(st) = > 0 (9)E (1)
@)

where s denotes the normalized
curvilinear coordinate of the rigid

beam in the range of 0 to I. @, (S)is

the kth mode shape of the flexible
beam corresponding to its boundary

conditions and @, (S) s its derivative

with respect to s. & (t)is the kth

generalized coordinate representing
the contribution of the kth mode shape
in the flexible motion. We consider

W, andW, as the deformation of the
beam at the two ends (s=0, I) and
W;and W, the corresponding slops.

For the clamped-clamped model we
have

W, =W, =0 and W, =w, =0

The position vector from reference
frame to a point on the beam is
considered asp=[x Yy]'. The

kinematics equations of a beam point
position X and Y, can be written as

X = X, +Vcos(6) —wsin(8) )
Y=Y, +VS, +WC, 5)

where P, =[x, Y,] shows the

position of rigid body motion of the
mass center of the beam and
v=Is—1/2.

Considering T, :[p0 G]T as the
position and orientation of the rigid
body motion of mass center of the

object, under  clamped-clamped
boundary conditions we can write

I |
n=r- [E Cy Ese O]T (6)

I I
r,=r, +[Ecg 5% 7]
where
c, =c0s(d) and s, =sin(9).

Differentiating equation (6) we can
write

r r
F=[R'(6) 0] °|=R(®) °|, (7
i =[R'(6) Lf} ()M()

where R'(@)is a 6x3 matrix and
R(0)isa 6x(3+m) one.

1 DYNAMICS

A Robots Dynamics

The dynamic equation of robot i can
be written as

Ml(ql)ql +C(q|'q|)q| +G| (ql)
=u +J;f,

@)

Rabat1 Foba 2
Figure 1
Two robot manipulators handling a flexible
beam
where M;(q;), C(q;,q;) and
G;(q;) denote the inertia matrix,
Coriolis effects matrix and
gravitational vector of robot .

U; and f, are the applied torque vector

at joints of robot i and interaction force
between robot i and the beam.



Assembling dynamic equations of two
robots we can write

M(@)§+C(a,9)g+G(@)=u+3"f (9)
B Beam Dynamics

To obtain beam dynamics we use
Lagrange’s method. For this, first, we
should drive kinetic and potential
energies of the beam under rigid body
motion and vibration of the elements
of the beam. The kinetic energy T of

the beam can be written as
1/2

T2 [ A0+ y)dv

-1/2 (10)
Differentiating equations (4) and (5)
and substituting in equation (10), we
can write

1
T=2t'M_(0,5)r

2 ro o( g)ro (11)
2EMEH WO
where

m, 0 —Cyaé
M,=| O m, —syaé
7C9a‘:r *Saag Io +‘§TMqé:

M, = diag[lj PAD, (s)]zds} 12)
0

W=[-s,a" c,a’ B'1
in which
|
o= [ pAd(s)ds (13)
0

I

B=[ PA(s—112)d(s)ds (14)
0

The elastic potential energy of the

beam is defined as
1/2

1 ow,, 1. (15)
U== | ElI(=) ds==¢&"K¢&?

2] () ds=5¢"Ke
where

K :digﬁEl[@ﬁ]zds] (16)

and El is the beam bending stiffness.

Applying Lagrange
considering X =[r,) &, the

equation of motion of the beam can be
written as

AX +BX +CX =-R" () f , 17)
where

M, W 0 0
A{WT MJ C:{o K}

equation and

MO_ErOT M, —I‘JM
B 2" o or, [(18)
T 1.,0M, 0
2° o0&

v IMPEDANCE CONTROL

One may decompose the forces and
moments at the contact points to
internal and external forces. External

forces f, are those that contribute to
rigid motion of the beam and internal
forces f, contribute only to vibration
of the beam. f; should be
decomposed to internal and external
forcesas f, = f, + f,.Since f, has

no contribution to the rigid body
motion it can be written as
2
f. =—R MY R'T, (19)
i=1

e

and f, :[f; fe:]T where C, (t) is
the distribution factor.

To achieve a desired dynamic
characteristic for the interaction
between the manipulator and the
object at the contact points, we should
consider two steps. The first step
decouples and linearizes the closed-
loop dynamics in task space
coordinates using inverse dynamics
algorithm [9]. In the second step, the
desired impedance  model that
dynamically balances contact forces at



the manipulator end effector is chosen.
For the second step,

f=1f+f, (20)
We let f, satisfy
f,=M,F+ K+ KA (1)

where M, C,and K, are the desired
inertia, damping and stiffness matrices,
and Ar=r-—r,where ry is the

desired position of the end-effectors
corresponding to the desired position
of the mass center of the beam. We let

f, be an I-type force feedback as:

f=ki, —kK, [Azdt ()
where A, is the desired internal force
magnitude, K is definite
matrix, AA=A-1, and
A= k(f —[f; feI]T) in which
k=[c, -s, 0 -¢c, -c, 0] and
f,, is derived from (19).

Considering equations (21) and (22), f
is written as
f=f+f=MF+Kr+KAr

positive

(23)
t

+ kA, —KK [ Addt

Solving equation (23) for I and

substituting into equation (9), the
control low is derived as

u= M(q)Me’l[f -k, +kK,j.A/1dt— K, F— KpAr]
0
+C(q.9)4+G(a)-J" f
(24)
V SIMULATION RESULTS

In the simulation, we have considered
two planar robots, each with three
revolute joints. These two robots are
handling a flexible beam that moves

from initial position and orientation of
r,=[2.2 1.7 0] to the desired
position and orientation of
r,=[232 135 .2]. The area

cross section and length of the beam

are (.001m2) and (1.5 m),
respectively. The elastic modulus and
density of the beam are (100 GPa) and
(30000 kg/m). Each link of the robots
has weight of (1.5 kg) and length of (1
m). The initial conditions of the
deflection of the beam and its time
derivative have been considered to be
zero. The controller gains are

consideredas M, =1 ¢,
K, =481, K, =2001.

Figure 2 shows the errors of the rigid
motion vs. time where first two curves
represent the position error and the
right curve shows the orientation error.
Also, Figure 3 shows the flexible
coordinates of the beam vs. time. It
can be seen from Figures 2 and 3 that
the rigid body motion errors as well as
the flexible coordinates converge to
zero.

Conclusion

This paper presented an approach for
transporting a flexible beam by two
manipulators to a desired position/
orientation while suppressing its
vibration and controlling the internal
forces. The model of clamped-clamped
boundary conditions was discussed.
The vibration of the beam was
modeled by using 6 assumed modes. A
hybrid impedance control algorithm
was utilized by combining impedance
control and an I-type force feedback
into one scheme. Simulations results
demonstrate the usefulness and
efficiency of the proposed method.



Figure 2

Errors of the rigid body coordinates vs. time

Figure 3
The flexible coordinates vs.time
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