
WEB-PS - A Web-based P System Simulator
with Query Facilities

Cosmin Bonchis, Calin Gârboni, Cornel Izbasa, Gabriel
Ciobanu1
{cbonchis,cgarboni,cizbasa}@info.uvt.ro,gabriel@iit.tuiasi.ro

Abstract: We describe here a tool for simulating P systems [Paun], which we developed
since we detected a relative lack of easy, user-friendly and complete software simulators
[PSWP]. We used CLIPS (embedded in C) to this end, and we made the simulator
available as a web application, complemented by a query language for P systems (PsQL)
for specifying the results.
As we found out the idea of using CLIPS to write simulators isn't at all new in the
community and there are several noteworthy implementations based on this approach (and
some based on other approaches, too).
However, since we believe we can responsibly say that it has some novel and interesting
features, some related to efficiency, some related to ease of use and generality, we hope this
warrants the simulator as a useful tool for the community [PSWP].

1 Architecture and Functioning
The functionality of the simulator is available at three distinct levels:

1.1 CLIPS Level
This is where all our knowledge about the theoretical simulation of P systems is
contained, the result being a library of CLIPS functions, (meta-)rules and
templates. C level since CLIPS is easily embeddable in C as its name - "C
Language Integrated Production System" - suggests, it is very easy to control the
simulator from a C program and we include such example programs, some
command-line and a web-based one to illustrate how this is to be done. This level
will soon be strengthened by introducing a C library for modelling and simulating
P systems based on the CLIPS library. Web application level by this we are trying
to offer a most user-friendly interface to the simulator, and which we hope will
become, after the addition of more solid debugging and visualization features a
true rapid P system development tool. To describe the CLIPS level - the core level
of the simulator, we must first address the crucial issue - how we implemented in a

sequential context the famed "maximally parallel and nondeterministic execution"
of P systems.

1.1.1 Maximally Parallel Execution

To meet the maximally parallel execution requirement we relied on constraining
our simulation cycle to these distinct steps:

1 the React step - here is where all the reaction rules that are activated are
sequentially executed.

2 the Spawn step - where all the new created objects created by rules inside
their membranes are asserted as object facts - they become visible for
future React steps.

3 the Inject step - where all the objects injected/ejected by rules in
different membranes are asserted as objects facts.

4 the Divide step - that handles possible membranes' divisions.

5 the Dissolve step - that handles membranes' dissolving processes.

By constantly recording the state of the P system after the first three steps - which
can be viewed as a single item for abstraction - and the executed reaction rules, we
can get an execution trace.

1.1.2 Nondeterministic Execution

To address the nondeterministic execution requirement we used since the
beginning CLIPS' _random_ strategy. However, prof. Ciobanu's questioning of the
validity of this choice made us look more closely at the random strategy and found
it lacking in a great way - it would always make the same choices for the same
rules and facts configurations upon program entry. We suspected this is related to
CLIPS' random function and found that the random strategy indeed uses it - by
calling the random function we changed the choices for the random strategy -
placing the random number generator into a distinct state. This was in turn related
to the improper seeding of the RNG, and we addressed this issue by using
/dev/urandom, the entropy gathering device on GNU/Linux systems to properly
seed it. This may be a solution for other CLIPS implementations that are possibly
haunted by the same issue.

1.1.3 Data Representation

The other important choices we had to make were related to data representation.
We chose to represent P system objects and membrane structure as CLIPS facts
(with CLIPS' set-fact-duplication option set to on) and the reaction rules as CLIPS
rules. This contrasts other implementations [3] that have represented reaction rules
as CLIPS facts, and while their choice might leave place for more general rules for

execution (meta-rules), we think we've managed to realize a sufficiently flexible
framework and that we needed the efficiency boost given by representing reaction
rules as CLIPS rules, thereby making direct use of the inference engine's pattern-
matching and rule activation capabilities. This choice was validated later by the
ease of the definition of the "dissolve-with-rules" and "divide" operations, that
implied a lot of moving around and copying of rules, which actually meant
(re)building them dynamically. Initially we thought about representing membranes
as modules, but that seemed to inccur a high efficiency and flexibility penalty, but
more study is needed to clearly establish this.

Here is the Backus-Naur Form [BacNau] of reaction rules and their conversions
into CLIPS knowledge-base components:

<rule> ::= <input_object> { "+" <input_object> } ->
 [<output> { "+" <output> }]
 <output> ::= <output_object> |
 <division_marker> |
 <dissolve_marker>
 <output_object> ::= <object_name>
 ["(" <target_membrane> ")"]
 <division_marker> ::= "%"
 <dissolve_marker> ::= "#"

As you can observe, the simulator supports divide and dissolve rules for
membranes. For example, the P system rule a+b->c+d(2)+e(0) with priority 11
from membrane 1 is converted into the CLIPS rule:

(defrule MAIN::1_a+b->c+d[2]+e[0]
 (declare (salience 11))
 (do (what react))
 (or (parent-child (parent 1) (child 2))
 (parent-child (parent 2) (child 1)))
 (or (parent-child (parent 1) (child 0))
 (parent-child (parent 0) (child 1)))
 ?a-0 <- (obj (name a) (membrane 1))
 ?b-1 <- (obj (name b) (membrane 1))
 =>
 (assert (newobj (name c) (membrane 1)))
 (assert (inject (name d) (membrane 2)))
 (assert (inject (name e) (membrane 0)))
 (retract ?a-0) (retract ?b-1))

The membrane structure is reflected by the parent-child facts. We observe in the
rule body that the object a from membrane 1 is represented as the CLIPS fact: (obj
(name a) (membrane 1)). Please note that while the a and b reactants are
consumed, the c and d, e objects will be created during the Spawn and Inject steps
respectively. Also note that the rule priorities are mapped directly to CLIPS rules
salience values and therefore are restricted to integer values in the [-10000, 10000]
interval.

1.2 The C Level
At this level we now use CLIPS' API, specifically we use CLIPS embedded in the
C program, although we plan on developing a complete library that encapsulates
this C-CLIPS interface more cleanly, namely a C library that will wrap nicely
around the CLIPS one.

Since we represented P systems using XML - and also defined an XML Schema
for this kind of document - the library that we have developed until now handles
XML parsing of the input for the CLIPS part of the simulator. Here is an example
description of a P system conforming to our schema - this sample system acts as a
multiplier for the count of a objects in membrane 1 and the count of b objects in
membrane 0, the result being the number of d objects in membrane 0.

<?xml version="1.0"?>
 <psystem>
 <membrane name="0">
 <object name="b" count="3" />
 <rule body="b+v->e+v+d" priority="1" />
 <rule body="e+u->b+u+d" priority="1" />
 <rule body="v->u(1)" />
 <rule body="u->v(1)" />
 <membrane name="1">
 <object name="a" count="4" />
 <object name="v" count="1" />
 <rule body="a+v->v(0)" />
 <rule body="a+u->u(0)" />
 </membrane>
 </membrane>
 <query text="count of (objects from 0 where (objects d
))" />
 </psystem>

For the example command-line and web application programs we have developed
we wrote various accessory and output functions for results returned by the CLIPS
level. The web application version is presented as a high-level, user-friendly
interface to the simulator.

1.3 The Web Level
As a web level user of the simulator, you can choose between a user-friendly P
system designer written in JavaScript and a traditional HTML input form that
offers the user two ways of transmitting the XML - by uploading a file or by
editing the contents of a textarea element. Aside from the XML P system
description editing, the user can specify a number of 'runs' of the P system. The
JavaScript P system Designer aims to facilitate the description of the P system
without requiring the user to write the XML but instead by generating it based on
the user's interaction with the dynamic interface.

After the XML is input it is transmitted to a PHP script (that does some further
processing) to the CGI program written in C. The C program uses our P system
XML library (PS-XML), LibCGI and, of course, the CLIPS library to simulate the
evolution of the P system and then return the results to the user. Exactly the
problem of deciding what results to return has led us to the idea of defining a
query language for P systems - PsQL.

1.3.1 PsQL (P Systems Query Language)

We defined PsQL as an SQL-like language for querying the state of a P system.
We developed a CLIPS library for parsing and interpreting this language. At the
web level, the queries must be specified in the XML input, and after each P
system run they are all executed. If you do not input any queries the P system will
be simulated but no output will be generated. At the CLIPS level you could
specify queries for the P system in a dynamic manner, not just before starting the
simulation. At the syntactic level it is a Lisp-like language and this is supported by
the development of a small CLIPS library of list-handling functions.
Here is a sample from the Backus-Naur Form for PsQL:

<query> ::= <expression> |
 <count-query> |

 <membranes-query> |
 <objects-query>
<count-query> ::= "(" count-of <objects-query> |
 <membranes-query> ")"
<objects-query> ::= "(" objects-from
 <membranes-spec>
 [where <where-spec>] ")"
<membranes-query> ::= "(" membranes-from
 <membranes-spec>
 [where <where-spec>] ")"

The full description is available in [PsQL].

We plan to extend PsQL with trace query facilities. This might aid in the
verification of the P systems.

2 Examples
Using our simulator we were able to develop several P systems that implement the
basic arithmetic operations.

2.1 Multiplicator P System
The first example is a P system that computes the product of two natural numbers.

The inputs to the P system are the number of a objects in membrane 1 and the
number of b objects in membrane 0.

The output is the number of d objects in membrane 0 and this is equal to mn .

This system differs from other similar ones in that it does not have exponential
space complexity and does not require active membranes. It would be quite easy
to compute n2 with it by just placing n a and n b objects as inputs.

Another interesting feature is that it can go on computing after reaching a result,
namely, if initially there are m b objects and n a objects, the system evolves and
reaches a 'final' state with mn d objects in membrane 0; now, if you also need
to compute mkn)(you can just inject k a objects in membrane 1 and the
computation will go on. So the system manifests a certain degree of reusability.

2.2 P System for the Recursive Sum – Revisited

This P system computes the recursive sum =

n

i ik
1 .

The numbers of a objects in the membranes 1…n are the summands and the result
of the computation is the number of a objects in membrane 0. The PsQL query to
determine this result is:

(count of (objects from 0))
While the example is very well-known and rather trivial, we present it to illustrate
the features and expressiveness of our P systems query language - PsQL. The
point is, if you can make PsQL queries then you don't even need any reaction rules
or actual functioning of the P system. Given the initial multiset without any rules
you can obtain the same result with the following query:

(count of (objects from (membranes from 0)))

2.3 P System for the Dot Product of Two Vectors
Combining the previous two examples we can compute the dot product of two
vectors, yx with mINyx, where m IN.

Assume the components of the vectors are xi and yi respectively. Then, yx is
given by the number of d objects in membrane 0 after this P system has halted.

where 1...0 mk .

Since the system is a composition of the recursive sum one and the multiplier, the
PsQL query for retrieving the output stays:

(count of (objects from 0))

3 Further Work
• C library for easier modelling of P systems.

• Continuing our commitment to standards compliance, we should be making
the simulator available as a web service in the near future.

• On the same note - we will strive for SBML compatibility for our
specification language, and this will involve further structuring of our XML
"rule" element.

• Better debugging and visualization capabilities (this will include a flexible
fine and coarse-grained tracer and very probably support for Sevilla carpets
as suggested by prof. Ciobanu).

• Developing a library of macros and methodologies for P systems, which
aims to make use of principles of modularity, extensibility and structured
design from software engineering for P systems.

• Introducing more flexible rules for aiding in the development of macros for
P systems, such as broadcast (send to all children), parentcast (send to
parent), broadcast* (send to parent and all children). This would be useful
since we would be creating new membranes for which we have no names

beforehand and it would be much easier to specify output to parent with a
parentcast for example.

Bibliography

[Paun]

Gh. PAUN Computing With Membranes, October 2000

[WMP]

External link to CDMTCS. Look for Tech. Rep No 140: Pre-proceedings
of the Workshop on Multisets Processing, Curtea de Arges (Romania),
2000

[JimCam]

Mario PEREZ-JIMENEZ, Francisco Jose ROMERO-CAMPERO, A
CLIPS Simulator for Recognizer P Systems with Active Membranes,
Research Group on Natural Computing, Department of Computer
Science and Artificial Intelligence University of Sevilla

[WEB-PS]

The P Systems Simulator http://psystems.ieat.ro/

[PSWP]

The P Systems Web Page: http://psytems.disco.unimib.it/

[CioPar]

G.Ciobanu, D.Paraschiv. P-System Software Simulator, Fundamenta
Informaticae, vol.49(1-3), 61-66, 2002

[CiPaSt]

G.Ciobanu, Gh.Paun, Gh.Stefanescu. Sevilla Carpets Associated with P
Systems. Report 26/03 Rovira i Virgili University, Tarragona, 135-140,
2003

[BacNau]

ISO/IEC 14977:1996(E) document

[W3C]

XML Schema Part 1: Structures Second Edition W3C Recommendation
28 October 2004 http://www.w3.org/TR/xmlschema-1/

[PsQL]

Backus-Naur Form for PsQL
http://twiki.ieat.ro/twiki/bin/view/Institut/PSystemsQueryLanguage

