
Multi-Agent System Model for Urban Traffic
Simulation

Alexandru Cicortas, Norbert Somosi
Computer Science Department
Mathematics and Informatics Faculty
West University of Timisoara
Email: cico@info.uvt.ro, wolfsomosin@yahoo.com

Abstract: Multi-agent systems models are frequently in many complex real systems. They
allow expressing event-based multi-agent, providing environment, and messaging,
execution and sensor services.
The development of agent based applications is difficult suffering from insufficient
standards and tools and on the other hand deployment issues are little researched and
supported.
The cooperation in multi-agent systems is one of the most important features that can be
understood in many ways. In the paper is suggested that the designers must make the
cooperation possible using appropriate tools.
Urban traffic problems are very complex and highly interactive. The multi-agent systems
(MAS) approach may however provide a new hopeful direction. A simulation system is
needed to understand and explore the difficulties in a MAS-based traffic control.

Keywords: multi-agent, traffic modeling.

1 MAS Framework and Design
Real systems [3] require abilities for accurately measure the influence of different
multi-agent co ordinations strategies in an unpredictable environment. A
significant advantage multi-agent systems (MAS) have over traditional designs is
the fact that the system is distributed. The decentralized, partially autonomous and
redundant nature of such a system makes them less sensitive to certain classes of
faults or attacks. This decentralization, however, also makes it difficult to analyze
these systems.

Multi-agent systems (MAS) are composed of autonomous, interacting, more or
less intelligent entities [1]. The agent metaphor has proven to be a promising
choice for building complex and adaptive software applications, because it
addresses key issues for making complexity manageable already at a conceptual
level. Furthermore, agent technology can be seen as a natural successor of the

object-oriented paradigm and enriches the world of passive objects with the notion
of autonomous actors. Therefore, one would suppose agent applications to be in
widespread use in academic as well as in industrial projects. The contrary is the
case. Even though many agent applications are developed in various domains,
most of them are specialized solutions that are deployed in at most one setting.

The MASs are not yet effectively distributed. One reason for this is that the
development of MAS is inherently difficult and error prone, because of several
intricate issues. First, the development process for building agent applications is in
most cases ad-hoc and not based on a generally accepted methodology, like for
example the well-known Unified Process for UML in the object-oriented world.
For agent systems, no such common ground exists due to different agent
architectures and missing standards. In consequence, a methodology has to be
chosen independently for each project among several alternatives. This choice is
crucial for the project’s success and is constrained by domain and implementation
aspects. In addition, whatever methodology is selected, the tool support is always
relatively poor and does not cover all phases of the development process.

Besides the methodology, the development of agent-based applications is difficult,
because the software is distributed and dynamic in nature and demands various
new skills and a new way of thinking from the developers. E.g. an object-oriented
software engineer cannot easily change to the agent paradigm without considering
ontology descriptions and studying the abstract speech-act based agent
communication. Additionally, intelligent agents often use mentalist notions or
employ rule-based approaches.

Another important reason for the scarce distribution of commercial off-the-shelf
agent applications is that there is currently no support for the deployment of agent
applications. In areas such as distributed object systems, systematical guidelines
and mechanisms for all activities concerned with deployment issues have been
developed.

These guidelines ensure that a properly developed distributed application can be
packaged into a reusable, maintainable and configurable piece of software.
However, although multi-agent systems composed of autonomous proactively
(inter-)acting entities differ considerably from distributed object systems, the issue
of appropriate deployment techniques for MAS is not yet very much researched.

One way is to specify agent applications at high-level using constraints to declare
what system properties need to be fulfilled for the application to work properly.
E.g. one could demand certain services and agent roles to be available, whereby
the deployment environment has the task to interpret and supervise these
constraints and has to start agent instances accordingly. As a first step towards this
high-level deployment for MAS we propose a reference model for the launching
of distributed multi-agent applications that are specified by declaring which and
how many agent instances shall be instantiated in what order. As part of the
reference model a generic meta-model for the specification of agent applications is

described, which consists of one layer for the definition of agent types and another
one for the ordered composition of agent instances belonging to a certain
application scenario. To underline the applicability of the proposed model a
prototype implementation is presented.

The complexity of real systems imposes to develop powerful simulators for Multi-
Agent Systems [3]. More of these are discrete, event-based providing
environment, messaging and sensor services. The motivation for such simulators
is based on the two simply but conflicting objectives:

 the ability to accurately measure the influence of different Multi-agent
coordination strategies in an unpredictable environment;

 realistically modeling adaptive behavior in multi-agent systems within a
static environment.

The MAS allow solving problems collaboratively by coordinating the knowledge,
goals and plans of autonomous intelligent agents. It offers certain advantages of:
faster response, increased flexibility, robustness, resource sharing, graceful
degradation and better adaptability of integrating pre-existing and stand-alone
systems. These concepts are the basis for our model.

1.1 Formal Framework
In [6] was proposed a conceptual framework for agents. A model for formalizing
agents was also proposed. The formal framework must satisfy at least the
following requirements:

 a formal framework must precisely and unambiguously provide meanings
from common concepts and terms and also do so in a readable and
understandable manner;

 the framework should be sufficiently well structured to provide a
foundation for subsequent development of new and increasingly more
refined concepts;

 alternative designs of particular models and systems should be able to be
explicitly presented, compared and evaluated with the relative ease
within the framework.

The Z language is recommended as an important tool [2].

As a view of the hierarchy of the entities, objects, agents and intelligent agents in
the environment in Figure 1 is shown that every entity is a refinement of other
entity i.e., an agent is a refinement of an object and so on. The entity is considered
to be a collection of attributes. The environment can be defined as a collection of
entities.

Figure 1

The Agent hierarchy

2 Deployment Considerations
First of all we most make distinction between the agent type and agent instance.
To support the launching of distributed multi-agent applications several basic
services can be identified. First of all, services are needed for starting and stopping
agent. For invoking these services, at least the following information has to be
supplied. The start of an agent instance should be based on a given agent type
definition which has to contain a reference to the agent implementation (e.g. a
Java class) and should declare the parameters that can be supplied to an agent of
this type. To instantiate an agent, its type definition, the name for the agent
instance (according to FIPA) and the assigned values for the parameters have to be
supplied. To stop an agent instance only the agent identifier has to be known.

In order to launch distributed applications these basic services should be available
remotely, therefore issues of security and accounting have to be considered. In
addition, it is desirable that only minimal requirements are necessary for the
manual configuration of network nodes, which could be achieved by code
distribution and a service that allows remotely starting new agent platforms. The
basic services additionally require a launch process management that has to make
sure, that the correct agents and platforms are launched at the correct nodes at the
correct times. One can imagine several ways to specify this. At the concrete level,
it is possible to directly define the dependencies between agent instances. The

launch process management can then determine the launch order based on a
topological sort of the dependency graph.

Constraints that are more abstract such as dependencies to specific services or
roles can be employed to define application characteristics already at the type
level (i.e. in agent type definition). In addition, application specific constraints and
network load characteristics can be used to determine the allocation of agent
instances to the available network nodes.

The monitoring and reconfiguration of the running agent instances should be
supported. On the one hand, an administrator might want to observe a running
application and manually add or remove agent instances or reallocate mobile
agents to new network nodes. On the other hand a monitoring service should take
care of the constraints and dependencies specified in the type and instance
definitions and perform appropriate actions when the constraints get violated, e.g.
by starting additional service agents to assure a given response time. By detecting
failures and re-launching of agents, as well as detecting agents which are no
longer needed by any application, the monitoring service can increase the
robustness of agent applications.

The exact mechanisms available to the monitoring service to alter a running
system have to be customized carefully for each application to reflect the varying
degree of autonomy for each agent. To support monitoring and reconfiguration of
agents and applications it is necessary to provide the responsible monitoring
entities with relevant state information about the monitored entities and vice versa
to be able to communicate back reconfiguration commands to the relevant agents.
In addition, the reconfiguration of a larger application often requires a coordinated
set of reconfigurations against the individual agents that constitute the system.
Furthermore, reconfigurations need to assure that the system is in a consistent state
after the reconfiguration has been performed.

Figure 2 depicts the structure of an agent type specification. An agent will be
defined the agent type specification e.g. when it is requested to instantiate an agent
of that type. The agent element captures important properties of an agent such as
the agent’s implementation class and the type, which identifies the required agent
platform. The single-valued parameters and multi-valued parameter sets represent
typed arguments that can be supplied when creating a new instance of the agent.
Additionally, it is possible to specify one or more (for parameter sets) default
values when no explicit value is provided for the creation of a specific agent
instance. Both kinds of parameters can be further elaborated with additional
constraint elements, used for restricting the set of allowed values for the
parameter.

Figure 2

The agent meta-model

3 Cooperation, a Communication Model
Cooperation [4] can be thought a lot of meanings depending upon the system
where it is used. So the cooperation can also be understood as working-together.
In this case, it must allow to the agents of the system to have tools for exchange of
information, sharing of knowledge, having a local way of doing, to capture the
local distinctions that make a particular activity significant and meaningful to the
other agents from the system. The cooperation and cooperative activities can be
viewed as a situation in which ambiguity is accepted as a structural element of the
interaction.

Cooperation is a way that allows to the agents that work together in order to
improve some goals, their activities seems to be inseparable and the order of these
activities is well defined. The agents must have the same language to express the
terms of their know ledges and interactions. The know ledges are shared in
appropriate ways such that the agents can be able to use them.

In the case of an urban traffic simulation system, the communication model that
we used is based on the following main idea: we can consider that a map/network
of routes is composed from several nodes and that these nodes are linked with
route lines. Every node in this system represents an agent, while the links between
them represents the communication channels between those agents. Every agent
can communicate only with those agents, for which a communication channel to

the original agent exists. An example for this communication model is presented
in the following figure:

Figure 3

Communication between agents in a simple crossing

In the previous figure is presented a communication model between agents in a
crossing with 4 in-entries and 4 out-entries. In this example we have three types of
agents. The generator-agent will produce/generate messages (in our case these
messages are cars/information about cars) and will send this messages to those
agents, which are linked to it. An agent of type junction will send a received
message to another agent, chosen randomly, which is linked to it. When a message
comes to an agent of type deleter, it will be eliminated from the system and will
not be considered any more.

In the case of the presented model, the agents communicate between each others
by using special messages. These messages are in fact some objects, in our case
some cars, while the links between the agents are some buffers (queues) in which
the messages/cars are stored. A buffer or queue with N messages means, that on
the route between two nodes corresponding to two agents, is situated a set of N
cars.

There are two types of agents used in this communication model:

 Normal Agents: when an agent of this type receives a message from another
agent, he will send this forward to the rest of the linked agents, without making
any modifications on the content of the received message. For example if we
have a very long route, which is made of a set o shorter routes (Figure 4) and
these routes are linked with nodes, then such a node can be considered as an

normal agent. A car which comes to a such of node, will continue its way o the
next shorter part of the route, which is linked to the node.

 Intelligent Agents: when an agent of this type receives a message from
another agent, modifies the content of the received message, or it waits a time
interval and only after then sends the message forward to the rest of the agents.
For example a node of type junction can be considered as an intelligent agent,
because it will send the received message forward to the agents of the system,
only when its state is green. When its state is red, he will stay and keep the
message until its state will change to green.

The working idea of this communication model is based on the followings: In the
system there exist some agents who will produce/generate cars (Car-generators).
These cars are generated randomly and stored in the buffers/queues which links
the generators with the rest of the agents of the system. Every queue has a well
specified length. When a car is inserted into a queue, it will be stored to the first
position of the queue .At every moment of time this car will change its position,
and will skip to the next free position in the queue, so the positions before the
current position of the car will be cleaned for other cars. A car can change its
position until he comes to the end of the queue that means that it is arrived to
another nod/agent. Now, depending from this agent, the car will be deleted from
the queue and inserted into another queue. This new queue is chosen by the agent,
depending on the type of the agent and on the number of queues linked to this
agent.

When an agent of type generator generates a message/car, the message will be sent
from one agent to another in the system until it arrives an agent which can not
send it forward to none of the other agents. At this moment the message/car will
be eliminated from the system.

A simple example for demonstrating the functionality of this communication
model is presented in Figure 4. In the presented example we have three agents:
Generator, Agent1 and Agent2. Between Generator and Agent1 we have a link (a
queue of length 3), while between Agent1 and Agent2 a queue of length 5.We can
observe that every queue has a traversing order, or a specified order of inserting
messages. This means, that when we have a link from agent 1 to agent 2, then only
agent 1 can send messages to agent 2, contrarily is not true. We must have a link
from agent 2 to agent 1, if we want a two-sided communication channel. Whit
other words every route has a traversing order. A car, which is situated on a route
can not move in both directions on the respective route. At the moment t=1 the
Generator agent generates a message/car A .This message is inserted into the
buffer, which links the Generator with Agent1. At the moment t=2 the message A
skips its position to the next available in the buffer. At the moment t=3 the
message A arrives the end of the queue, while the Generator generates another
message B, which is inserted into the first position in the buffer. An important
moment is at t=4.At this moment the message A comes to Agent1. This agent

deletes it from the buffer, and puts it into the next buffer between Agent1 and
Agent2.When a message comes to Agent2, it will be deleted from the second
buffer and destroyed.

Figure 4

Communication model with buffers

In practice this is more complicated. Every car could have a different speed, so it
can skip more then only one position in the buffer at a given moment, or an agent
can be linked to more then one other agents and in this case we have more buffers
than one, in which we can store a received message. The new buffer can be chosen
randomly or using a specified method. For example if a car comes into a node of
type junction, it will have more possibilities to continue its way ,depending on the
crossing settings, from which the junction takes part.

An implementation of this model is presented in the next paragraph.

4 Traffic Modeling, Application: TraffSim V1.0
The evolution of systems concerning traffic control reflected the changes in
optimization criteria that evolved gradually based on accumulated experience [5],
[9], [10], [7]. Were tacked into account some performances indices like the length
of queues on traffic lights, the number of vehicles stops during a journey. Another

systems use the on-line traffic flow data to modify the split/cycle/offset timing of
the road junction lights in response to random fluctuations of traffic intensities.

In [10], shows how can provide current and predictive data on the basis of
simulations and historical data. The on-line simulation provides current
information, i.e., real-time data about the traffic state, like link travel times. The
basic framework for an on-line simulation is introduced. It is based on the
combination of an agent-based model, with real-world data stemming from
inductive loops. The application of this framework to real road network is given.
In order to provide predictive information, historical data is incorporated into the
simulation. Historical data is analyzed and used to develop heuristics, the basis of
a forecast. The impact of such predictive data on the current traffic patterns is
analyzed.

[1] gives a general concept of the traffic information system that allows;

 constructing a simulation model in that the movements required by
driving a car are in detail developed;

 implement of an adequate topology;

 visualization of the traffic state.

The application TraffSim V1.0, which implements the multi-agent model
described in the previous paragraph, it was implemented in Visual C++ 6.0. The
application has two main parts:

 a part allows the construction of a network of routes and traffic
components like crossings, car generators etc. and the setting of the
attributes of these components

 and a part of simulation, which allows the visualization in real time of the
traffic activities on a constructed map/network of routes.

The construction of an arbitrary map can be made easily using the mouse. The
user has the possibility to construct nodes, routes and crossings, and for each of
these components to specify specific attributes. For example for a route the user
can set the maximal speed which is allowed for cars on the respective route etc.

The agents are implemented using nodes. The application allows four types of
nodes/four type of agents: junction, car-generator, connection to another map and
normal node. For each of this node types we can specify different attributes. For
example for a node of type car-generator we can specify how many cars we want
to be generated in N time units, or for a node of type junction we can set the time
interval between the junction states (i.e., green and red state) etc.

Figure 5

The GUI of the Application

The graphical user interface (GUI) of the application is presented on figure 5. The
user can construct any type of traffic map, with an arbitrary configuration of nodes
and routes, crossings with variable number of entries, signalized and unsignalized
junctions and car generators which can generate cars using different methods of
generating random numbers. The maps can be saved and reused. We can add new
components to an existing map and we can change the attributes of the existing
components.

Figure 6

The GUI for modifying the map components

Figure 7

A Running Simulation

The user can change at every moment the properties of a given node. For example
we can run a simulation on a map with a car generator, which generates cars using
some specified rules and after then to rerun a new simulation on the same map
with the same car generator, but this time using another generation rule. Te user
can continue a stopped simulation, with new properties of the map components or
restart the simulation with new values for the attributes of the map components.
An example of simulation in presented in figure 7.

The construction of a map/network of routes has the following steps:

 specifying the positions of the nodes and the construction of the routes,
which links these nodes;

 specifying the type of these nodes (For example: a map is only then valid,
if it contains at least one car generator);

 specifying the crossings positions and setting these crossings. We can
create crossings with variable number of in/out-entries, and with variable
junctions. We can set the communication links between all the junctions,
which take part of a particular crossing.

At the time of a simulation on the screen are visualized information about the
number of cars in the system, the number of exited cars from the system, the
number of entered cars into the system, the global simulation time and the number
of map components. The user can also change at every instant the simulation

speed, to stop a running simulation, to modify the properties of some components
and to restart the simulation with these new changes.

The application is very extensible, we can implement and add new types of
components later and has a client-server distributed part, which can be used for
maps with larger size. A larger map can be partitioned in multiple maps with
smaller size and these smaller maps are distributed on different computers in a
network. The communication between these maps is realized by some special type
of agents, which communicates using the TCP/IP protocol between the different
parts of the map, on distinct computers.

The application contains implementations of synchronization methods between the
agents of the system. Every agent of type junction knows the state of the other
junctions, which take part from the same crossing. So an agent of type junction,
before changing its local state, looks at the states of the rest of the junctions and
corresponding to their states will change its own state. So we can avoid the
eventually collisions between cars in the inside of a crossing. Every agent will
allow for a car to change its route, only then when on the corresponding route
there is a free place for the car. The car-generators will not stop generating cars
when on the screen a route is full.

Conclusions

In this paper we discussed some basic concepts about the problematic of multi-
agent systems and we presented a simple multi-agent communication model for a
particular case: traffic simulation. The presented model was based on a graph of
nodes with unidirectional links between these nodes, while the communication
model between these nodes was based on the using of multiple message buffers.

In the second part of the paper we presented shortly an implementation of the
model (in the project application TraffSim V1.0).The application allows the
construction of maps with four types of agents, presented in this paper. We can
now add new type of components (ex. Train lines etc). The distributed part of the
application is also implemented, we work now on the implementation of the
agents, who will realize the communication between the distributed map parts of a
larger map.

References

[1] Braubach, L., Pokahr, A., Krempels, K. H., Winfried Lamersdorf, W.,
Deployment of Distributed Multi-Agent Systems, Fifth International
Workshop on Engineering Societies in the Agents World, Eds., Marie-
Pierre Gleizes and Andrea Omicini and Franco Zambonelli, 2004

[2] Bowen, J., Formal Specification and Documentation using Z: A case Study
Approach, International Thomson Computer Press, London, 1996

[3] Horling, B., Lesser, V., Vincent, R., Multi-Agent System Simulation
Framework, 16th IMACS World Congress 2000 on Scientific Computation,
Applied Mathematics and Simulation, August 2000

[4] Introna .L. D., Cooperation, Coordination and Interpretation in Virtual
Environments: Some Thoughts on Working Together, Cognition,
Technology &Work Vol. 3, 2003, pp. 101-110

[5] Li, M., Chong, K. W., Chan, S., Hallan, J., Agent-Oriented Urban traffic
Simulation, The 1st International Conference on Industrial Engineering
Application and Practice, 1996

[6] Luck M., d’Inverno, M., A Conceptual Framework for Agent Definition
and Development, The Computer Journal, 44(1), 2001, pp. 1-20

[7] Mazur, F., Chrobok, R., Hafstein, S. F., Pottmeier, A. and Schreckenberg,
M., Future of Traffic Information - Online-Simulation of a Large Scale
Freeway Network, IADIS International Conference WWW/Internet 2004,
Procs Vol. 1, Madrid, Spain, October 2004, pp. 665-672

[8] Moldt, D., Wienberg, F., Multi-Agent-Systems based on Coloured Petri
Nets, 18th International Conference on Application and Theory of Petri
Nets, Toulouse, June 23-27, 1997

[9] Peychev, E. T., Bargiela, A., Parallel Simulation of City Traffic Flows
using “PADSIM”, 2001

[10] Wahle, J., Schreckenberg, M., A Multi-Agent System for On-Line
Simulations based on Real-World Traffic Data, in: Proc. of the Haiwai
International Conference on System Science (HICSS), (IEEE Computer
Society, 2001)

