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Abstract: The paper is an attempt to outline a hierarchical model of language apprehension 
based on an extension of Language of Thought Hypothesis (LOTH). Several arguments are 
presented which show that language being incomplete has limitations in representing both 
the reality and the mental states. Therefore, postulating LOTH similar with a conventional 
language is fallacious. Nonetheless, if language is related with thought, language 
properties would have to have a causal root in the functioning of the mind. This 
controversial issue is discussed in relation with the possibility of using Zipf’s law for 
identifying a deeper causal law at the level of cognition. Zipf’s law may be related with 
language redundancy necessary for the language understanding process. This process can 
be modeled based on information compression performed by a self-organizing neural-
computation structure at two levels. At the first level, a feature extraction is done in a 
parsing process of a natural conventional language, and the result is a linguistic map 
which acts as input for the second level of compression. There, a purely semantic map is 
formed which is independent of any conventional language, accounting in this way the 
universality of thinking and reasoning process. 
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1 Introduction 
In a classical approach, the interdependence of language and thought has taken the 
shape of a theory called The Language of Thought Hypothesis (LOTH) [1]. 
However, because there is not yet a clear conception of thinking and language, 
different claims about their relation are expressed. Accepting the premise that 
language is related with the reasoning process, the main problem in any cognitive 
model is to account the process by which meaning is conveyed into sentences and 
the cognition which culminates in the intuitive perception of truth. The purpose of 
this article is an approach towards the developing of a cognition model starting 
from the premise of the validity of LOTH. 

The second section makes a short presentation of the LOTH thesis. Section 3 
shows that because any formal language is incomplete LOTH cannot be postulated 



in a similar fashion as a conventional language. Section 4 points to the possibility 
of using the Zipf’s law in identification at the mind level of a deeper causal law 
responsible for language generation and understanding. Section 5 shows the 
possibility of modeling language understanding in a two-level hierarchy based on 
information compression. The last section draws the conclusions and points to 
further researches. 

2 Language of Thought Hypothesis 
LOTH appeared as an empirical thesis about the nature of thought and thinking. It 
is postulated that thought and thinking are performed in a mental language. 
However, since this idea of a mental level is itself a controversial one, i.e. there 
isn’t yet a clear conception of mind accepted by scientific community, the 
language of thought is supposed to take place as a symbolic physical system 
realized in the brain of some appropriate organisms. Another postulate in this 
approach is that thoughts are defined as “propositional attitudes” [2, 3]. 
Propositional attitudes are the thoughts described in a language by sentences of the 
form: S As that P, where S refers to the subject of the ‘attitude’, P is the 
proposition that is the object of the attitude, and A stands for attitude verbs such as 
‘think’, ‘believe’, ‘hope’, ‘desire’, etc. We see that from the way thoughts are 
defined, LOTH is based on the “Representational Theory of Mind” (RTM) [4]. 
The intimate relation language-thought is stressed by assuming that: “S As that P“ 
describes a mental process S - Ψ - R(P), where there is a psychological relation Ψ 
between the subject S and a mental representation R(P). R(P) means that P. Mental 
representations are functionally describable entities that manifest at some suitable 
physical level, and the relation Ψ is meant to be understood as a 
computational/functional relation. So, the mental representations are a language 
with syntax and semantics. 

We will see in the next section that conceiving mental representations similar with 
a formal conventional language is inadequate for accounting cognition due to the 
inherent limitations of any formal system. 

3 Limitations of Language 
Accepting the interdependence of language and thought leads us to the conclusion 
that all knowledge must culminate in verbal knowledge. Our knowledge of reality 
is shaped by the language we use. However, language has its own limitations in 
representing reality. A language is by its own nature a formal system, and any 
formal system is incomplete. 



One way of seeing the incompleteness is from Gödel’s theorem viewpoint, which 
makes a clear distinction between truth and provability. The meaning of truth and 
falsity exists in one's consciousness, but one is constrained to reason in some 
given context or language. Reasoning and truth recognition are two different 
things. In other words, this incompleteness, this Gödel phenomenon, points to the 
distinction between language and thought. The conclusion is that we have to give 
up the idea that everything, in order to be accepted, must be proven in a formal 
way or using a language. New conjectures and axioms should be chosen because 
of their usefulness and of large amounts of evidence suggesting that they are 
correct. But in order to decide upon the mathematical truth of such statements as 
Gödel propositions we shall need to employ insights or information from outside 
the system. A formal system cannot exceed its informational complexity, or its 
initial semantic content. 

Next, we analyze the capacity of language to represent reality. Although LOTH 
posits an intimate relationship of language with reality, this intimacy seems to be 
superficial, at least with the kind of conventional language we use to 
communicate. This is a paradoxical situation, since we cannot imagine a world 
beyond language. Language is composed of words. The capacity of language to 
represent reality is given by the capacity of words to individually evoke an object. 
A word is a mere indicator of an object, it only reveals the object. Yet, the 
characteristics of that object, i.e. its form, size, color, attributes, are understood 
from our repeated observation and usage rather than from words. An object in its 
totality is never understood from the word which is used to denote it. The word is 
only a name given to an object. Yet the objects we perceive are not names. We 
have to make a distinction between the word which is an abstraction, existing in 
our minds, and the real object denoted by that word. Of course, there is also 
another distinction between the real object and the perception of this object by the 
senses. This three-level distinction suggests a possibility of a multilevel cognitive 
model, involving three different domains. One domain is the information domain. 
Another domain is the physical world, which we may know indirectly, through our 
senses. And, finally, the domain that we know directly is the domain containing 
mental images, and where sensorial sensations and thoughts are formed. The main 
difficulty in accepting this philosophical picture is to conceive the way in which 
the abstract informal domain, has influence upon the physical domain. Still, our 
common sense experience suggests that there is a close and real relationship 
between the informal domain and both the physical and mental one. As we shall 
see later, such a multilevel model can be developed by extending LOTH. 

In any conventional language, every word is an arbitrary name given to an object. 
Thus, we may represent the reality through language by assigning names to things. 
Starting from Berry paradox, Rucker pointed out in that the concept of 
“nameability” is itself unnameable, i.e. that there can never be a reasonable short 
description (using a language) of how to understand language [5]. In this paradox 
we deal with naming numbers, instead of naming things, but ultimately the 



naming process involved is similar. In short, the Berry paradox shows that with n 
bits or words or whatever symbols we cannot explain or name what we understand 
by a name of n bits or words long. In other words, this proves the incompleteness 
of language to describe how the meanings are carried by words. There is no way 
to describe in a finite way how a series of words are transformed into thoughts or 
names into numbers. 

Language is not only a mismatch for reality, it also misrepresents reality. We may 
arrange many combinations of words that represent something that doesn’t exist in 
reality. The reality with which language is directly connected exists only in the 
mind. Thus whatever can be expressed by words belongs to mental reality. 
Language is not at all connected with the external world. It is connected with the 
mental reality, and also is incomplete in representing its own mental reality. In this 
context of language limitations, postulating LOTH as having similar 
syntactic/semantic form as a conventional language appears fallacious. Therefore, 
we need to identify other causal laws accounting for the structure of the mind. 
More, if language is related with thought, language properties would have to have 
a causal root in the functioning of the mind. This issue is controversial and is 
discussed next in relation with Zipf’s law. 

4 Zipf’s Law 
During the last century several scaling phenomena have been empirically 
discovered. These statistical laws are related somehow with living societies. 
Scientists are preoccupied to prove mathematically if these laws are universal and 
find out the causal factors behind the observed phenomena. One of the first 
concepts proposed to account for the hyperbolic type distribution found by Zipf in 
natural language texts was related with the principle of least effort, and seen 
somehow as a property of mind. However, this principle was not widely accepted 
and at present the scaling phenomena have not much relevance for cognitive 
science. Still, some authors try to find new evidence which may reveal an 
underlying cause of these phenomena and go beyond the laws of probability. The 
purpose of this section is to explore the possibility of relating scaling phenomena 
to cognitive modeling. We discuss in particular the Zipf’s law and try to identify 
some deep causes that might be useful in accounting the cognitive function. 

Analyzing the distribution of words in English texts, Zipf found a regular 
statistical pattern [6]. The most common word in English is ‘the’ and appears 
approximately twice as often as the second most common word, three times as 
often as the third most common, ten times as often as the tenth most common, and 
so on. The law is consistent also with the nature of communication, according to 
which the most common words tend to be short and appear often. What Zipf 
discovered is a power law. This means that small occurrences are extremely 



common, whereas large instances are extremely rare. Another example where the 
same law applies is the populations of cities. The ranked incomes also follow the 
same law. Zipf’s law can be applied when the observed objects have a property 
(length, size, etc.) which is modeled by an exponential distribution that places 
restrictions on how often larger values can occur. The underlying principle is that 
efficiency, competition, or attention with regards to resources or information tends 
to result in Zipf's law holding to the ranking of objects. 

Finding an explanation of Zipf’s law in spite of some attempts to consider it 
irrelevant is still of much interest. We have only two options: (1) either we can 
assume that the law reflects some universal property of human mind, or (2) we can 
assume that it represents some necessary consequence of the laws of probabilities. 
The first approach is synthetic and was chosen by Zipf himself who proposed the 
validity of a principle of least effort that would explain the apparent equilibrium 
between uniformity and diversity in the common use of words. The second one is 
analytic, the law being viewed as a consequence of regarding a message source as 
a stochastic process. 

The principle of economy Zipf referred to was not a new concept in science, and is 
natural for our common sense experience. The same principle regarding 
information processing in visual perception was previously considered. However, 
this concept was abandoned in favor of a search for a probabilistic explanation. 
Mandelbrot was the first who has pointed out that Zipf’s law can be observed in 
“monkey typing” texts [7]. Miller also suggested that phenomena described by 
Zipf’s law could be caused by a simple random process for creating words and the 
boundaries between words in natural languages, without being the need for 
appealing to least effort, least cost, or maximal information principles [8]. 
However, it’s hard to conceive how the process of letter sequencing in forming a 
language and expressing meanings is nothing more than a random process that 
have a statistical explanation. A. Tsonis, Schultz, and P. Tsonis argue against 
random texts relevance to natural language for the purpose of proving Zipf’s law 
[9]. They claim that in contrast with natural languages, in random texts all 
combinations of letters are considered as possible words, and the frequency of a 
word’s occurrence is a function of its length. Very short and very long words are 
expected to be the least probable. They also suggest that the deviation from the 
Zipf’s law or the under-representation observed for the higher-ranked words is not 
accidental, but is due to languages evolution and structure. In contrast, Li 
comments the above claims defending the statistical point of view [10]. In his 
opinion, the very short words are the most probable in random texts, and the 
Zipf’s law manifests not only in unbiased random texts but also in biased texts as 
shown in [11, 12], when a monkey not necessarily types all alphabets with equal 
probability. Thus, by reducing the probability of some symbols not all 
combinations of letters can appear, and it is possible that a longer word will rank 
higher than a shorter one because it contains the more frequent symbols. 
Therefore, these differences put in discussion in [9] between random texts and 



natural languages seem to be irrelevant to the proof of Zipf’s law in random texts. 
Zipf’s law still holds even without an intentionally least effort principle involved 
in human communication. In conclusion, Li suggests that because the Zipf’s law 
can be proved to exist in random texts, a “cost cutting”-like process cannot be 
identified as a deep causal law in natural language. In a more recent paper, Ferrer i 
Cancho and Sole defend the original least effort principle invoked by Zipf, [13]. 
They argue that Zipf’s law is the result of the nontrivial arrangement of word–
concept associations adopted for complying with hearer and speaker needs. In 
other words, Zipf’s law is not a meaningless feature but a necessary condition for 
an optimum symbolic communication. 

If the principle of least effort would prove to be right, and hence would be 
validated as being a property of mind, this would be of great importance for 
cognitive science, because at least we may identify a structural property at this 
level. Let’s review what this principle says. According to Zipf, the development of 
language involves reaching a certain vocabulary balance as a result of two 
opposing forces, the force of unification and the force of diversification. The first 
force corresponds to the principle of least effort from the transmitter’s point of 
view. This force tends to reduce the vocabulary. The second force has an opposite 
effect and is related with the receiver interest to associate meaning to speech, as 
much as possible. This model involving a two-person game, is somehow related 
with the role coding plays in classical theory of communication. The purpose of 
channel coding is to encode the source information in an effective manner so that 
a minimal amount of errors will occur when it is decoded. One effect of this is that 
channel coding employs redundancy to accomplish this. Source coding or 
information compression is used to reduce the number of bits transmitted from a 
source. The result is a lower redundancy in the transmitted information. It is very 
interesting to note that channel and source coding have opposite effects, one 
increases the size of the message and the other one decreases it. In the case of 
channel coding the redundancy is useful at the receiver for error detection and 
correction. On the other hand, the redundancy in the source message is dependent 
on the message to be sent and is not structured and useless for the receiver. We 
can see that the economical and efficiency principle of transmitting information is 
at the base of Zipf’s approach. However, this has to be proven as being a causal 
principle at the mind level. 

From the cognitive science point of view, the premise we suggest to consider in 
this discussion is that the language generation as comprising the semantic 
information content of the transmitter must have a causal law beyond the 
statistical law behavior. If natural language is of the same nature as random texts 
then the semantic association with the syllables of words would be completely 
formless, and no semantic structure could be identified in language. Words convey 
meaning in a correspondence to their syllables structure. A word is nothing more 
than the phonemes that are found in it, but these very phonemes cause the 
understanding of the word’s meaning. The process of comprehension resides in 



the accumulation in the hearer’s (or reader’s) mind of the syllables impressions as 
they are sequenced in time. These syllables make invariant words but also 
inflectable word-bases and inflections. A word-base or an invariant word 
contributes its meaning to the sentence meaning in an independent way, while an 
inflection contributes its meaning in a dependent way. Therefore we have to 
understand the word as a sound/symbol sequence which has to support syllables 
inflections. 

In this context of word dependency of the syllables structure, we studied the word 
frequencies of a random word generator based on the analysis of the frequency 
pattern of pairs of letters in English word-list databases. Using Markov chains the 
algorithm starts by printing any n consecutive letters in the text. Then at every step 
it searches for any random occurrence in the original text of the last n letters 
already printed and then prints the next letter. Some letters are more likely than 
others to occur after a given pair of letters. In this way the words generated are 
devoid of any semantic content but nonetheless are syntactically correct, i.e. 
pronounceable. We want to prove the influence of higher semantic level in 
language structuring. We used two random word generators [14, 15]. Three 
experiments, labeled (i), (ii), using the first generator, and (iii), using the second 
generator, have been performed as presented in Table 1. The words generated vary 
in length from 2 to 24 symbols. The most frequent words occupying the first ranks 
are 2-letter, 3-letter and 4-letter length for all cases. It can be seen that the word 
frequency has a decreasing trend with the rank but it cannot be associated with a 
power law pattern due to its very low significance in the total amount of words. 
The first ranked words have a weight of only 0.6% - 1.5% of the total number of 
generated words, which is much too less for being relevant for a statistic pattern. 

Table 1 
Word profile statistics for 3 experiments of randomly generated words. 

Word frequency No. of words Percentage word count 

i ii iii I ii iii i ii iii 

10 15 6 1 1 1 100 100 100 

5 4 5 1 1 2 99.03 98.58 99.43 

4 3 3 1 3 1 98.55 98.20 98.49 

3 2 2 3 36 21 98.17 97.38 98.20 

2 1 1 15 960 999 97.3 90.56 94.25 

1 - - 982 - - 94.42 - - 

For the sake of comparison, the word frequency versus rank has been computed 
for a natural language text having a close length. We chose The Library of Babel 
by Luis Borges, which contains around 1020 words. The word frequency and the 



word count percentage are given in Table 2 for the first 20 ranks which contain 
only one word, excepting the ranks 18 and 20 having 2 words. The first ranked 
word is “the” and appears 223 times, which means 21.84% of the total number of 
words. The list of the most 20 frequent words is given in Table 3. 

Table 2 
Word statistics for natural language text (The Library of Babel by Luis Borges). 

word 
freq. 

% 

word 
count 

word 
freq. 

% 

word 
count 

word 
freq. 

% 

word 
count 

Word 
freq. 

% 

word 
count 

223 100 59 80.9 30 72.9 22 68.4 

130 92.3 56 78.9 28 71.9 21 67.6 

75 87.9 51 77 27 71 20 66.9 

66 85.3 36 75.2 25 70 19 65.5 

62 83 31 74 24 69.2 18 64.9 

Table 3 
The first 20 ranked words in The Library of Babel. 

rank word rank Word rank word rank Word 

1 the 6 is 11 it 16 have 

2 of 7 that 12 library 17 one 

3 and 8 to 13 this 18 books 

4 a 9 which 14 not 19 are 

5 in 10 I 15 be 20 all 

The frequency versus 
rank is depicted in 
Figure 1. We can see 
that a typical hyperbolic 
pattern emerged, which 
indeed proves the 
Zipf’s-like law tendency 
as expected for natural 
language texts. 

In the next section we 
propose a two-level 
hierarchical model of 

Figure 1 
Word frequencies versus rank for natural language text.



Figure 2 
Word frequency versus rank for the compressed text. 

language based on information compression. At the first level, language and 
speech manifest externally. The meaning being encoded into letters/phonemes, in 
order to be understood language needs to be redundant. The employ of natural 
language in a two-person like game involves redundancy and hence information 
compression. This redundancy as we might expect is employed in helping the 
receiver to correct errors and compensate for noise. In our example, we can see 
from Table 3 that the most frequent words are less informative. The first word 
bearing a semantic content related to the narration’s context is “library” and 
occupies only the 12th position. The word ‘books” is the next semantic important 
one and comes in the 18th position. On the other hand, there is another property of 
language. Every word in a natural language can be regarded as a code or label for 
its meaning. The meaning is a relatively complex body of knowledge, and the 
word acts like a tag in pointing to that knowledge. Therefore, even if natural 
language text manifests redundancy similar with channel coding, the source 
coding is performed also by coding the information into the words’ symbolism. 
Therefore, sentences are highly coded and compressed representations of 
speaker’s information source. 

A compressed sequence 
manifests random 
properties, and if the 
power law would manifest 
as a statistic property of 
random texts this would 
have to be visible after 
compression also. The 
same text was compressed 
using Lempel-Ziv 
algorithm, and the 
frequency variable 
distribution is shown in 
Figure 2. The distribution 
looks much more linear 
than the previous one for 
the uncompressed text, 

without the power-like law tendency. 

The above results show that Zipf’s law doesn’t manifest at a higher level of 
semantic cognition where language appears compressed. Therefore, Zipf’s law can 
be rooted in a language structuring process of coding, which adds redundancy 
necessary for language understanding. This would take place at the second level in 
the model we propose. Language generation implies redundancy according to the 
observed power-like law, and language understanding implies eliminating 
redundancy by compression. 



5 Two-Level Language Hierarchy 
From the viewpoint of algorithmic complexity, the most fundamental property of 
brain has to be the enormous interdependence between its components. This 
means that it is much simpler to view it as a whole than as the sum of its parts. If 
both, the whole and parts are equally complex then the parts are independent, i.e. 
they do not interact. This suggests the idea of information compression process 
that might take place at some higher level of the cognitive architecture. The 
process of inductive reasoning itself suggests also this idea. It involves the mental 
merge of the repeating instances of each pattern in our experience, a feature 
extraction from the perceived data. If there is no pattern, there is no understanding. 
That is the reason why a random pattern seems to be valueless: because our failure 
in the attempt of extracting redundancy or compressing it. There is also other 
evidence from psychology, biology and computer science [16, 17], showing that 
information compression is used as technique in cognitive processes. 

All these arguments point to the conclusion that information compression is an 
essential feature of information systems, being intimately related to the principle 
of inductive reasoning, which itself provides a foundation for any cognitive 
system dealing with the storage and processing of information. We suggest that 
LOTH may be applied following the principle of information compression. 
Several authors developed symbolic methods for parsing natural language based 
on information compression [18, 19]. The basic idea is searching for redundancy 
which can be understood as a search for patterns which match each other. Like any 
other search problem because of its exponential nature it has to deal with finding 
an optimum strategy in terms of search costs. Therefore we can expect to be 
normal to circumscribe the search or to guide the search by some measure of 
redundancy or both in the process of inductive inference. However, a symbolic 
approach involving searching can hardly deal with real situations. The idea in our 
approach is to use a self-organizing neural-computation approach of data 
compression. A self-organizing network can be trained to perform a mapping F: 
Xn → Ym, where m < n. The input information or the training pattern is redundant. 
The network is capable of performing a feature extraction or a dimensionality 
reduction of input data. This kind of neural-computation approach seems very 
suitable for performing data compression as we need in our model of language 
understanding. Training is unsupervised and is usually based on a form of global 
competition between neurons. We are interested in self-organizing networks that 
cluster or categorize the input data. The architecture should be developed on two 
levels of language processing. On the first level, language is parsed according to 
the conventional grammar rules of whatever language is analyzed. Here, a remark 
is necessary: obviously, there are certain differences between spoken and written 
language processing, especially at the early stages of processing. However, it is 
not our purpose to deal with these differences. The issues that we shall explore in 
this article are common to both spoken and written languages. The neural network 
at the first level performs a mapping FCL: Xn→Y2. The map represents a two-



dimensional projection of the distance relations between the patterns in the 
original multidimensional pattern space of a conventional language. The learning 
rule follows the classical competitive learning. The input multidimensional space 
is formed of linguistic categories as in the classical parsing approach (NP, VP, PP, 
etc.). The output may be in principle a phonotopic map or a syntactic-semantic 
map. The function of the first mapping level is to compress language features or 
regularities of any conventional language to an intermediate level of 
understanding. At this level, the semantic properties of language are only partially 
represented. 

One difficulty here is to define a suitable metrics for the words of a language. The 
distance function on the input space of patterns has to be in harmony with the 
choice of appropriate input vectors x. The different clusterings of the input data 
depend on how this choice of metrics is done. Another problem is that at this 
purely conventional language interpretation, the meaning of a word is 
disassociated from its encoding into letters and/or sounds. Also, the words 
denoting similar objects should be mapped with the same topology. Therefore, a 
metric relation should be defined between these words. A classical solution is due 
to Ritter and Kohonen, and developed by Honkela [20, 21]. The conclusion is that 
even in a limited context, a meaningful semantic map can be produced. The 
neural-computation approach proved to be successful in dealing with expressions 
that are of symbolic nature, and could display semantic relationships among them. 

Figure 3 
Model of cognition based on language compression
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Next, we need a second neural network that will accept as input the syntactic-
semantic maps obtained on the first level. The result will be a purely semantic 
language independent map, denoting only higher concepts or abstractions. These 
form a language of thought embracing the whole domain of knowledge, and used 
for thinking. This language is independent of the symbolic conventional language 
used in communication, and does not contain distinguishable symbolic parts, as an 
ordinary communicative language. In Fig. 3 it is presented a general structure of a 
possible cognitive model. The existence of a second level of language is supported 
also by psychological experiments in which the subjects are asked after reading a 
certain text to reproduce the exact words and the phrase they read. The subjects 
remembered the whole idea of what they read in most of the cases, but rarely they 
could chose correctly the exact sentence they read. Recent experiments suggest 
higher memory retention for meaningful words and pictures versus meaningless 
ones [22]. 

The above proposed model goes beyond the premise that every language is 
conventional and temporal, and hence the relationship between word and meaning 
has to be purely arbitrary. Such a view would lead us to the fallacy of infinite 
regress. Therefore, we have to postulate that if language of thought would exist, 
this has to be universal and manifested in a completely compressed form. 
Therefore, it is not expected that any distinctive lexical parts would be discernible. 
This is accomplished in the proposed model by the second level of language 
compression. Here, the semantic map constitutes the mental representation of 
concepts and abstractions, the semantic patterns of objects, actions, and attributes. 
The semantic map represents in fact a metalanguage, i.e. a language in which one 
can describe both objects in the world and sentences in the object language. By the 
existence of this level we can account solving paradoxes such as the liar paradox: 
(S) “This very sentence id false.” The truth of such a sentence belongs to a 
language of a higher order, in our model the compressed language of thought.  In 
the proposed model, at the perceptive level, language and speech manifest 
externally, existing a difference between the meaning of a word and its encoding 
into letters and/or sounds. Ultimately, at the highest level of compression there is 
no necessity of sequence in language. Meaning appears in its entirety as a 
semantic map. By these two levels of language we also can explain the duality of 
rationalistic and intuitive thinking. The communicative language has to comprise 
distinctive sound/symbol units through which one can express rationalistic 
thoughts. On the other hand, at a higher level of understanding process, the inner 
state of cognition is ineffable. In this state of conscious awareness the meaning is 
perceived in its entirety as a whole, without the need of mediation through 
distinctive lexical parts. 

Conclusions 

We started from the premise that thinking and speaking are interrelated and there 
is a language of thought for representing knowledge. At one hand, we use a 
communicative language, through which we can express our thoughts, but in the 



same time we are aware that much of our knowledge is represented in nonverbal 
form. This indicates that knowledge is not ultimately represented symbolically by 
the aid of words, but by a sort of noncommunicative purely semantic 
representation. Only, when we communicate something, a conventional set of 
symbols are used in forming a language. Even if there are so many different 
languages (and many more can be in principle invented) there is no evidence that 
the speakers of those languages think about the world in different ways. Therefore, 
we propose a two-level hierarchical model of language based on information 
compression. At the lowest level, language is used conventionally in a symbolic 
form, for communicating ideas and concepts that are reasoned at a higher level in 
a universal language of thought manifested in a completely compressed form. 
Language generation implies redundancy according to the observed power-like 
law, and language understanding implies eliminating redundancy by compression 
in two levels as presented above. 

References 

[1] A. J. Fodor: The Language of Thought. New York: Thomas Y. Crowell 
Co., 1975 

[2] A. J. Fodor: Propositional Attitudes. In Representations: Philosophical 
Essays on the Foundations of Cognitive Science, J. A. Fodor, Cambridge, 
Massachusetts: MIT Press, 1981 

[3] M. Aydede: Connectionism and Language of Thought, Tech. Rep., 
Stanford, CSLI-95-195 

[4] A. J. Fodor: Psychosemantics: The Problem of Meaning in the Philosophy 
of Mind. Cambridge, Massachusetts: MIT Press, 1987 

[5] R. Rucker: Infinity and the Mind. Princeton University Press, New Jersey, 
1995 

[6] George K. Zipf: Human Behaviour and the Principle of Least-Effort. 
Addison-Wesley, Cambridge MA, 1949 

[7] B. Mandelbrot: Linguistique Statistique Macroscopique. In L. Apostel, B. 
Mandelbrot and A. Morf, Logique, Language et Theorie de l’Information, 
Paris: Presses Universitaires de France, 1957 

[8] G. Miller: Some effects of intermittent silence. Am. J. of Psychology. 70: 
pp. 311-314, 1957 

[9] A. A. Tsonis, C. Schultz, and P.A. Tsonis: Zipf’s law and the structure and 
evolution of languages. Complexity. 2(5): pp. 12-13, 1997 

[10] W. Li: Letters to the Editor. Complexity, 3(5): 9-10, 1998 

[11] W. Li: Random texts exhibit Zipf's-law-like word frequency distribution. 
IEEE Transactions on Information Theory, 38(6), pp.1842-1845, 1992 



[12] R. Perline: Zipf’s law, the central limit theorem, and the random division of 
the unit interval.  Physical Review E, 54(1), pp. 220-223, 1996 

[13] Ramon Ferrer i Cancho, Ricard V. Sole: Least effort and the origins of 
scaling in human language. Proc. Natl. Acad. Sci. USA, vol. 100, no. 3, 
2003, pp. 788-791 

[14] R. Lawrence: Random Word Generator. 
http://www.fourteenminutes.com/fun/words/ 

[15] A. Chase: A Generator of Perfectly Cromulent Words. 
http://andy.greyledge.net/misc/cromulac/ 

[16] J. G. Wolff: Computing, Cognition and Information Compression. El. 
Journal on Theory and Review in Psychology, 1997 
(http://gemstate.net/susan/Wolff.htm) 

[17] Ming Li and Paul Vitanyi: An introduction to Kolmogorov complexity and 
its applications. Revised and expanded second edition, Springer-Verlag, 
New York, 1997 

[18] J. A. Storer: Data Compression: Methods and Theory. Computer Science 
Press, Rockville, Maryland, 1988 

[19] J. G. Wolff: Parsing as information compression by multiple alignment, 
unification and search: SP52. SEECS Report, 1998 

[20] H. Ritter, and T. Kohonen: Self-Organizing Semantic Maps. Biolog. 
Cybern. 61: 241-254, 1989 

[21] T. Honkela: Self-Organizing Maps in Natural Language Processing. PhD 
thesis, Helsinki University of Technology, 1997 

[22] E. Mu and D. F. Galleta. The Influence of the Meaning of Pictures and 
Words on Web Page Recognition Performance. Proc. of the 36th Hawaii 
Intern. Conference on System Sciences (HICSS’03) 


