
A Computational Methodology as the Artificial
Language for Natural Language Rules and the
Unification Based Approach

Konstantinos Fouskakis
Department of Computer Science, “Politehnica” University of Timisoara, Faculty
of Automation and Computers, Bd. V. Parvan, No. 2, 1900 Timisoara, Romania,
E-Mail: costasfous@yahoo.com

Abstract: The purpose of this work is to describe the main features of a computational
methodology of expressing linguistic rules on X-bar structures and the main ideas of the
unification based approach.

Keywords: methodology, linguistics, language, unification.

1 Introduction
The X-bar theory is a linguistic framework proposed and improved by Noam
Chomsky [1][2][3] mainly in the context of the syntactic analysis of natural
language phrases. The X-bar theory has been elaborated by several workers both
in the past and more recently not only in the context of syntax but also in the
context of morphology. One of the basic points of the X-bar theory is that it
advocates the existence of a general linguistic structural scheme expressed by a
restricted set of abstract grammatical rules, which, according to the linguistic area
of concern and to the specific case within this area, are constrained and mapped
according, to specific linguistic categories. This general structure is the main built-
in assumption of this methodology, in all other respects the methodology is open
to subtheories, principles and transformations as long as these are complying the
basic X-bar scheme. Under these assumptions, the methodology allows:

• the development of a set of principles and transformations

• the development of a set of X-bar theories in terms of principles and
transformations

• the selective application of the above on the X-bar structures in order to
obtain the desirable results

We must emphasize that the methodology does not impose any restrictions but the
basic one (which is the most general one) and hence, it is believed to be open to
future developments of the X-bar theory. It can describe general linguistic rules on
the X-bar trees in a formal way similar to the X-bar theory and under the
assumptions of the X-bar theory. The X-bar structure that the methodology
manipulates may be used for syntactic, semantic and pragmatic information. In
this way, it can be used as a representation for a machine translation system or a
man-machine interface system by using a set of required transformation rules.
Additionally, it supports the checking of the accepted rate at a rule application and
permits the evolutionary changing of the manipulated X-bar structures. It imposes
a new methodology of expressing linguistic rules and it is implemented in prolog.
In the unification features based approaches like the HPSG[6][7], which is based
on the sing representation, the sing of the source and the destination language are
not possible to be determined directly. That is why it is still necessary for another
semantic representation at this kind of systems. Also, the checking possibilities of
the developed methodology allow a more flexible and strong controlling manner
of the different cases of the linguistic knowledge.

2 The Unification Based Approach

2.1 The Context Free Grammars
An example of a CFG [4][6][7] can be the following:

S-> NP VP
VP -> V NP VP -> V
NP -> D N NP -> PRON NP -> PROPER_NOUN
D -> the | a | every N -> car | bicycle | boat | bus
V -> drives | repairs | drive | repair | rides | ride
RPON -> I | you | he | she | they | us | them
PROPER_NOUN -> ANN | GEORGE | NICK

This grammar produces a set of grammatically and semantically correct and
incorrect sentences. Some examples of sentences that are produced and are not
grammatically or semantically correct are the following:

them repairs bicycle bicycle drives car

Ann drive George the bus repair Nick

The phrase structure is the only syntactic relationship. The terminal and non-
terminal symbols are atomic with out any properties. The information that is
encoded in the grammar is based only on production rules and any attempt to
encode semantic information requires an additional mechanism. The CFG

mechanism must be stronger in order to be able to fulfill the linguistic
requirements (e.g. features structures, generalized phrase structures, unification
grammars).

2.2 The Feature Structures And Unification Based Grammars
The CFG can be extended by associated features structures with the terminal and
no terminal symbols of a CFG. The features structures are known and as AVM
(attribute value matrixes). The words in the lexicon can be enhanced with
additional information by using the features. Two examples:

Word: Car Word: I

Except the simple atomic values of the features NUM and PERSON in these
examples, it is possible to have as value of the features other features structures.
An example of a verb and its feature AGR:

Word: Runs

Also, it is possible to use variables[7] with name e.g. X or with number e.g. [1] as
following:

The variables are used in order to determine that two elements of an AVM [7]
have the same values. The general format of an AVM is the following:

A = [i0]

According to this, the previous example has:

dom(a) = {ARG} val(A,ARG) =

Also, there is the notion of path π. At the same example the value of the path:

val(A,<AGR, NUM>) = singular val(A,<AGR, PER>) = third

but the val(A,<PER, AGR>) = undefined

NUM: singular
PER: third

NUM: singular
PER: first

NUM: singular
PER: third AGR:

NUM: singular
PER: thirdAGR:X NUM: singular

PER: third
AGR:[1]

F1: [i1] A1

Fn: [in] An

dom(A)

Fi ≠ Fj

val(A,Fi) = Ai

NUM: singular
PER: third

Between two different features structures we can define the relation of
subsumption [7].

If A and B are two AVMs, the A subsumes B (A≤B) when:

• A is an atomic AVM and B is an atomic AVM with the same atom

• For every F that belongs in dom(A) then and F belongs in dom(B) and
val(A,F) subsumes val(B,F).

If two paths are re-entrant in A they are also re-entrant in B.

An example is:

 ≤

An operation between two features structures A and B is the unification[6][7]. An
example:

A= B=

and after the unification we have the:

If variables exist in the A and B features structures:

A = B =

After the unification

We can add features in the rules. An example is:

NP ------> D N

In this example the scope of the variable X is inside the rule and it means that the
noun phrase (NP), determiner (D) and noun (N) have the same number. Also, if
we want to control the case we can add a second feature the CASE:

NP -------> D N

NUM: singular
PER: third

NUM: singular

NUM: singular PER: third

NUM: singular
PER: third

NUM: singular AGR:[1] PER: third AGR:[2]

NUM: singular
PER: third

AGR: [1][2]

NUM: X NUM: X NUM: X

NUM: X
CASE: Y

NUM: X NUM: X
CASE: Y

The rule for the verb phrase (VP) depends from the type of the verb. There are
transitive and non-transitive verbs.

VP -------> V

VP -------> V NP

In the above examples it was used the CFG rules associated by the features
structures. It is possible to include the non-terminals as values of a CAT feature.

In order to have complete sub categorization information we can enter in the
lexicon the complete list of complements and the subject. It is possible to add
additional features like the CASE that is determined for the subject of the verb
taken in the following example (it is named sign in HPSG):

According to the above if we want to express the initial rule of the CFG: S - > NP
VP with the use of features structures it will be as follows:

 [1]

All the above examples and different cases describe the main notions and
mechanisms of the unification based grammars.

NUM: X NUM: X
SUBCAT: transitive

NUM: Y

NUM: X NUM: X
SUBCAT: non-transitive

CAT: NP
NUM: X

CAT: DETERMINER
NUM: X

CAT:NOUN
NUM: X

CAT: verb
SUBCATEGORIZATION: < [CAT:NP], [CAT:NP] >

SUBJECT:

NUM: singular

CAT: noun phrase
CASE: nominative

CAT: s
CAT: noun_phrase
CASE:nominative
NUM: [2]

CAT: verb
NUM: [2]
SUBJECT:[1]

3 Structure of Linguistic Knowledge
The linguistic knowledge for the presented methodology is demostrated in the
following figure.

Let’s define:

– LS: the system of the linguistic knowledge

– PR: the set of rules in the Principles

– TR: the set of rules in the Transformations

– GR: the set of rules in the Theory

– SR: the linguistic program

o SR is subset of the concatenation of the sets GR, PR and TR

– IT: the set of initial X-bar trees

– OT: the set of final X-bar trees

– LS=(PR,TR,GR,SR,IT,OT)

– The Initial X-bar Trees

It contains trees that derive from the X-bar scheme in order to apply on them the
defined rules.

– Principles

It contains the principles that have been defined. The principles check an X-bar
tree if it accomplishes certain structural requirements as a whole or at its parts.
Also, they can check if nodes, features of nodes, anaphors, even terminals are
according to certain linguistic requirements.

– Transformations

It contains the transformations that have been defined. The transformations
additionally, transform the X-bar trees and produce one or more new X-bar trees
with different structure, nodes, features of nodes, anaphors or terminals.

– The Linguistic Theory

It contains rules that express the linguistic theory that one wishes to develop.
These rules are expressed as sequences of principles and transformations. We can
also have a conditional application of the rules by using expressions if-then-else
and change the X-bar trees that are used by the next rules. The abilities that these
rules have will be described in detail in the next sections.

– The Linguistic Program

It is the part of the linguistic system which declares the rules of the theory,
principles, transformations that are applied on the initial X-bar tree and their order.

– The Final X-bar Trees

It contains the generated X-bar trees according to the linguistic program.

4 X-Bar Structures
The X-bar structures[1], that the system manipulates, are derived from the
following rules:
Χ2 Spec Χ2 Χ2 Spec Χ1
Χ1 Χ1 Υ2 Χ1 Χ0 Υ2
Spec X0 Spec X2
X0 terminal

In the above rules the Y2 is a structure of the form X2. These rules can derive
structures of form X’’ or XP of the X-bar theory[2][3]. The above X-bar structures
are represented in the system with the use of parentheses and they have the
following form:

(X2 (Spec) (Χ1 (Χ0) Υ2)) (X2 (Spec) (Χ1 (Χ1(….) Υ2)) (X2 (Spec) (Χ2(Spec)…

Every phrase, sentence or utterance can be represented in the initial X-bar trees by
more than one X-bar tree.

4.1 Nodes and their Features
A node of an X-bar structure is defined by its name followed by its category. So
the node Χ2 is declared as x barii, the Χ1 as x bari and the Χ0 as x bar. The
features of a node give grammatical, syntactic and semantic information of a node
or subtree. A feature is notated as following:

• + Name of the feature, - Name of the feature, Name of the feature

• Name of the featureY= Name of the featureX

• [Name of the feature1,….,Name of the featureN]=Name of the featureX

Spec X1

X0 Y2

X2

Their semantics depend from our interpretation. In the last two cases the order of
the features is important and these cases are not supported by the X-bar theory of
Chomsky. They permit better well expressed additional descriptions. Examples of
the previous cases are the following:

• +male, -human, singular

• phrase_time=t2, focus=v1, [+live_being,+thing]=complements

• node article bar: features [+singular, +nominative]

4.2 Terminals
The terminal elements of the X-bar structures are represented:

terminal terminal element

Examples of terminals: terminal man, terminal woman

4.3 Anaphors
The anaphor declaration is between the following elements (they can be in
different X-bar trees):

– terminal elements or traces of terminal elements

– subtrees or traces of subtrees

The general format for anaphoric connections: anaphor name of anaphor

An example of a terminal element with its anaphor: terminal the:anaphor i1

5 Principles and Transformations
The principles and the transformations are rules that we define according to the
presented methodology[5]. These rules are stated to be applied on the X-bar trees
that were described in the previous section. The principles are used to control the
correctness of an X-bar tree according to the requirements that we state. The
transformations are stated in the same way and have the same abilities with the
principles, but they can also change the structure and the elements of the tree on
which they are applied on, leading to one or more trees. The principles and
transformations are the main part of the methodology and are declared in the
presented linguistic knowledge system. We can enter in the system a large set of
such rules and use only these rules that we wish to apply each time on the X-bar
trees. With these rules we express the main linguistic knowledge that is of our
interest and thus we can process the natural language trees accordingly. The

complexity and the number of the rules depend on our requirements. Both the
principles and the transformations are stated using the same general pattern.

– principle / transformation The name of the rule

– variables (The variables are declared which correspond to parts of an
X-bar structure and can have more than one values)

– structureDescription (An X-bar subtree structure is described on
which the rule is applied. Also, variables and operators are used)

– structureCommands (The different elements checks, the variables
values changes, the new declarations of variables and the
transformations, if the rule is of transformation type, and other
possible commands are used)

In order to define general rules, a group of operators that describe the relations
between different subtrees, as well as variables in the fields of principles and
transformations have been developed.

These are the variables of the kind of variables field and the variables that can be
defined only in the structuredescription field and are used for the description of
the transformations in the structurecommands field.

The variables of the first kind can be either variables that have already been
defined in the field variables or new variables. If a variable has already been
defined then it must be of the same type with the corresponding element of the
structuredescription structure that it substitutes. This variable constraints the
corresponding element of an X-bar structure that the rule is applied on, in a
specific set of values (see in the example below the variables Noun and Verb).
Also, we can use new variables of the variables type that are defined
automatically the first time as they appear in the structuredescription structure
by taking their values from the corresponding element of the X-bar structure
where this rule is applied on (see in the example below the variable sbLeft).

The other kind of variables can be of type node of structure, terminal element or
subtree. They can be used in combination with the other kind of variables and they
belong to the transformationvariable kind. The result of this definition is the
declaration of a new variable. The type of this variable is the type of the
corresponding element of the structuredescription structure. The initial value of
this variable is the value that has the corresponding element of the X-bar structure
on which we apply the rule (see in the example below the variables sdRoot,
sdRight and sdWhole).

Also, there are different kinds of operators in the structuredescription field.
There are operators with two arguments that declare that a subtree must be or not
(left or right) subtree of another subtree and a subtree must be or not subtree of a
another tree with a specific head node. Except the above, there are operators with
one argument that declare a subtree must not be subtree of an X-bar structure at a

specific position (not), a subtree should exist as a subtree in any depth in
respective place of the X-bar structure (aTree), a subtree is the first subtree in any
depth if the tree is scanning top-down left to right starting from the respective
place of the X-bar structure (aFirstTree), a subtree is the left most subtree in any
depth (leftMost). Also, there are the operators (and, or) with two or more
operands. The first operator declares that all the operands are subtrees at this
position of an X-bar structure. The second operator declares that at least one of the
operands is subtree at this position of an X-bar structure.

Finally, an assumption is stated:

If the tree of the structureDescription field or a subtree of this tree
contains less anaphors or features of nodes than the X-bar tree in its
corresponding position then the rule is applied on this tree.

This assumption is based on the general principle:

If the required information for the application of a rule exists in an X-bar
tree then it is possible for this rule to be applied on this X-bar tree. The tree
examination is top-down left to right.

In the structurecommands field we can define new variables in the same way as
the variables field, of features type that take values from tree nodes, of anaphor
type that take values from terminals subtrees and of subtree type that take values
from an input X-bar structure. Additionally, the values of variables can be
changed by adding or removing their values, setting new values, calculating all the
values of a variable according to the current values of the possible used variables
and other possibilities. The transformations are declared by using the
corresponding operators (see the operators transformations and transform in the
following example). Also, there are many operators that check features, anaphors,
trees, nodes terminals and their parts. It is possible to use these operators in
combination with the if – then – else command in order to execute various
commands.

The principle has as output structures the subset of its input structures on which
has correctly been applied on. The transformation has as output structures the new
set of structures that have been produced by it. Also, there is the possibility to
check the accepted rate between the input trees and their subset of succeeded trees
by using the command acceptedRate(Rate).

An example of transformation rule is the movement of a noun phrase.

transformation ‘Attachment of noun phrase’.

variables node ‘Noun’ set ‘N’ barii or ‘Noun’ barii
 also node ‘Verb’ set ‘V’ bari or ‘Verb’ bari.

structuredescription
 atree (node &’Verb’: transformationvariable sdRoot,

 subtree &sbLeft,
(node

&’Noun’,anytree,anytree):transformationvariable sdRight
): transformationvariable sdWhole.

structurecommands
(&sdRight addanaphor i1, % addition of anaphor reference
 transformations % declaration of transformations

&sdWhole transform
 (node &sdRoot,

(node &sdRoot, subtree &sbLeft, t:anaphor i1),
subtree &sdRight)).

The above transformation acts upon an X-bar structure that has a sub tree
(operator atree) as the left structure and produces a new X-bar structure with a
subtree as the right structure:

6 Linguistic Theory
We can describe a set of rules by using principles and transformations. This set of
the rules constitutes our theory. Their general pattern is:

– grammar name of grammar

– the main part of the grammar

In the main part of the grammar, we use principles and transformations, as well
as other grammars that have already been defined. Also, it is possible to have
conditional application of the rules in a grammar, depending on the result from the
application of some other rules by using if - then – else. We can perform a
repeated application of the grammar if in the main part of the grammar we use the
command grammar name of the same grammar.

V

V ’

N ’’

Spec
N ’

N Υ ’’

V ’

V ’

V t: anaphor i1

N ’’:anaphor i1

Spec N ’

Υ ’’N

The transformational rules are able to produce one or more new X-bar structures,
also the principles returns the set of succeded X-bar structures. These structures
can be used by the next rule (principle, a transformation or a grammar) for further
processing. The operator that adds the new set of structures is the addStructures,
that sets the new set of structures is setStructures. The operator
setSucceededStructures sets as X-bar structures for the next rule the structures
that the last rule has been successfully applied on. The operator restoreStructure
resets the X-bar structures for the next rule to the last X-bar structures list that has
gotten from the initial X-bar structures. Also, it is possible to select another X-bar
structure from the set of structures by using the operators getNextStructure,
getPreviousStructure and getParticularStructure(Id). Also, there is the operator
getInputTreeId(Id) that returns the id of an input X-bar structure. Except the
above operator there are the operators newInputTrees(Id) and
addInputTrees(Id). They change the input structures according to the output
structures of the last principle or transformation.

In order to exchange information between the different rules that are used by the
grammars, there are the grammar variables. They can be used by more than one
principle or transformation and permit smaller rules by using known information.
Their operators are addGrammarVariable, removeGrammarVariable. The
commands about variables of the structureCommands field of principles (new
variables declaration, change and checks of the variables values) can be used.

Conclusions

A computational system that implements the presented methodology is possible to
be used as a tool by researchers. They can define rules and they can apply them on
a set of X-bar structures. Moreover, it is possible to combine this with another
system that produces these X-bar structures based only on general phrase structure
information. They can produce a set of X-bar structures and then the second

software system (that implements the presented methodology) will examine and
transform these structures and will produce new ones or will reject invalid
structures. The software system of the presented methodology can manipulate the
semantic, syntactic and pragmatic information of the X-bar structures. The main
advantage of this approach is the possibility to define more general and simple
rules that can be close related with the X-bar theory. The structures are all
derivations of a specific binary tree, the X-bar scheme. The above facilitates the
implementation, maintainance and extension of the corresponding applications.
This particular two levels implementation is better for embedded applications
since the defined and produced structures are simpler and it is not necessary to
have large memory size and strong processor. The most important is that it can be
used for the description of general linguistic rules on the X-bar trees in a
computational way as computer language implemented in prolog that has specific
syntax and semantics with operators and variables (different than approaches of
natural language proccessing like rewriting rules or the no-transformational
unificational LFG, HPSG). It describes a powerful and flexible way of staying and
manipulating the linguistic knowledge with step-by-step production and checking
the X-bar trees and imposes a new methodology of expressing linguistic rules. It
manipulates the semantic and syntactic information of the x-bar structures and
according to the acceptance rate of a rule and permits the evolutionary changing of
the manipulated X-bar structures.

References

[1] N. Chomsky: Lectures in government and binding, Dordrecht: Foris, 1981

[2] N. Chomsky: Barriers, Massachusetts: MIT Press, 1986

[3] N. Chomsky: The minimalist program, Massachusetts: MIT Press, 1995

[4] D. Cristea: Formalisme si instrumente de descriere si prelucrare ale limbajului
natural, Iasi: Editura universitatii “Alexandru Ioan Cuza”:2002

[5] K. Fouskakis: ‘A computational methodology for linguistic rules’, SACI
Romanian-Hungarian Joint Symposium on Applied Computational
Intelligence (IEEE Romanian section), Timisoara, Romania:2004

[6] D. Tatar: Inteligenta arificiala - demostrarea automata a teoremelor
prelucrarea limbajului natural. Cluj-Napoca: Editura Albastra:2001

[7] D. Tatar: Inteligenta arificiala – aplicatii in prelucrarea limbajului natural.
Cluj-Napoca: Editura Albastra:2003

