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Abstract: A novel branch of Computational Cybernetics was formerly developed for the 
adaptive control of approximately and partially modeled Classical Mechanical, Electro-
mechanical and Hydro-mechanical systems. It essentially was based on the Modified 
Renormalization Transformation for the convergence of which the positive definite nature 
of the inertia matrix was needed. In this paper the extension of this method is formulated 
for negative definite, Single Input, Single Output (SISO) systems that may also occur in 
Classical Mechanics when a multiple Degree Of Freedom (DOF) system has only one 
driven axis and this drive is used to control a different axis utilizing the nonlinear dynamic 
coupling between the axes. As an example the inverted pendulum-cart system is considered 
in which the drive of the cart’s translational DOF is used for controlling the rotational axis 
of the pendulum. The extension results in a whole family of parametric transformations in 
which two parameters, a “multiplicative” and a “shift” parameter are present. It is shown 
that the fact of the convergence is robust against the variation of these parameters and 
their actual value mainly concerns only the speed of convergence. Simulation results 
illustrate these statements. 
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1 Introduction 

A new approach for the adaptive control of imprecisely known SISO dynamic 
systems under unmodeled dynamic interaction with their environment was 
initiated in [1]. Instead of tuning the supposed analytical model parameters a fast 
algorithm that finds a certain linear transformation to map the observed system-
behavior to the expected one calculated on the basis of a very primitive initial 
model is applied. The so obtained „amended model” is step by step updated to 



trace changes by repeating this corrective mapping in each control cycle. The 
method essence of the method was a modified version of the Renormalization 
Transformation that generally is used for transforming the fixed points of 
nonlinear mappings. Since no any effort is exerted to identify the possible reasons 
of the difference between the expected and the observed response, it is also 
referred to as the idea of "Partial System Identification" that is very similar to the 
main point of the approach applied in various contexts [e.g. 2, 3]. This anticipates 
the possibility for real-time applications. Later the method was extended to 
Multiple Input, Multiple Output (MIMO) systems by constructing appropriate 
linear transformations with quadratic matrices. Several algebraic possibilities were 
investigated and successfully applied. For instance, the “Minimum Operation 
Symplectic Transformations” [4], „Generalized Lorentz Group” [5], and a special 
family of the „Symplectic Transformations” [6] can be mentioned. The conditions 
of convergence of this approach were investigated in a wider context in [7] on the 
basis of Perturbation Calculus. The key element of this proof was the positive 
definite nature of the inertia matrix of the Classical Mechanical Systems. This 
requirement meant a considerable restriction in the applicability of this method. 

In the present paper we wish to increase the applicability of our method for 
negative definite SISO systems by introducing a whole family of parametric 
transformations in which two parameters, a “multiplicative” and a “shift” 
parameter are present I transformation that can be recognized as further 
generalization of the Modified Renormalization Transformation. Such systems 
also occur in Classical Mechanics when a multiple Degree Of Freedom (DOF) 
system has only one driven axis and this drive is used to control a different axis 
utilizing the nonlinear dynamic coupling between the axes. As an example the 
inverted pendulum-cart system is considered in which the drive of the cart’s 
translational DOF is used for controlling the rotational axis of the pendulum. It is 
shown that the fact of the convergence is robust against the variation of these 
parameters and their actual value mainly concerns only the speed of convergence. 
Simulation results illustrate these statements. 

2 The Proposed Transformation 

The forthcoming considerations pertain to physical systems for which the 
controller tries to obtain a desired response xd by applying an imprecise and 
incomplete model to calculate the estimated necessary excitation e=ϕ(xd) that 
according to the actual dynamics of the system results in the realized response  
xr=ψ(ϕ(xd))≡f(xd). It is supposed that the desired response is known, the realized 
response is measurable, and though the exact form of f(xd) is not known at least its 
increasing or decreasing nature can be deduced from the physics of the system to 
be controlled. In the ideal situation the realized response is equal to the desired 



one that corresponds to finding the fixed point of f as f(xd)=xd. 

As is well known the Renormalization Transformation can transform a function 
f(x) by a scalar parameter γ as fγ(x)≡γ-1f(γx) that transforms the fixed point f(x)=x 
since if z=fγ(z)≡γ-1f(γz) then f(γz)=γz=x. It was plausible to try to use this 
transformation for the adaptive control that can also be formulated as a fixed point 
problem. However, due to the fact that in the control just xd is needed as the 
output, the modified algorithm defined as 

( ) dd
nnn xxsssfs =−− 121 ...  (1) 

was introduced in [1]. As it qualitatively is illustrated in Figs. 1 and 2 for 
monotone increasing system this series can properly (sn→1) and improperly 
(sn→k<1) convergent i.e. if the solution of the f(sxd)=xd equation is properly or 
improperly situated. (Divergent solutions can also be constructed). 

For monotone decreasing SISO systems it is a plausible idea to extend the above 
given transformation by a parameter ζ that can either be positive or negative, and 
that for the special case of ζ=0 corresponds to the original transformation [Fig. 3]. 
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To give a satisfactory condition for the convergence of the proposed method 
consider a flat differentiable function g(x), for which the following estimations can 
be done according to which if the derivative of g is small enough in a region it  
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Proper convergence of the originally Modified Renormaliaztion Transformation 



realizes a contractive mapping. 
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Improper convergence of the originally Modified Renormaliaztion Transformation 
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For a contractive mapping the xn=g(xn-1) series is a Cauchy series since 
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Proper convergence of the originally Modified Renormaliaztion Transformation 
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In a complete metric space that converges to a well defined value u that must be 
the fixed point u=g(u) since 
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The series defined in (2) corresponds to seeking the solution of the following fixed 
point problem in which gζ(x) has to be contractive: 
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In the above expression parameter ζ corresponds to the “multiplicative” factor. In 
order to obtain more “treatable” behavior when the fixed point is zero, it is 
expedient to introduce a “shift” parameter D in the formula determining the 
multiplication factor. If f(x)→0 then f(x)+D→D and the division in (6) will not 
become critical: 
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As Fig. 3 intuitively shows it, in many cases this iteration can be convergent. 

As an illustration in the sequel the cart+inverted pendulum system is considered in 
which the pendulum’s shaft is not actuated but the linear translation of the cart has 
a drive. This drive can be used for controlling the motion of the pendulum due to 
the nonlinear coupling of the axes in the Euler-Lagrange Equations of motion of 
this system. 

3 The Mathematical Model of the Cart – Inverted 
Pendulum System and Simulation Results 

The Euler-Lagrange Equations of motion of the system is 
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in which some “realistic” data were used, i.e. M=1.096 kg and m=0.109 kg denote 
the mass of the cart and the pendulum, L= 0.25 m and ϕ [rad] is the length and the 
rotational angle of the pendulum with respect to the upper vertical direction 



(clockwisely), x [m] denotes the horizontal translation of the cart+pendulum 
system in the right direction, b=0.1 N/(m/s) and f=0.00218 kg×m2/s are viscous 
friction coefficients, I=0.0034 kg×m2 denotes the momentum of the arm of the 
pendulum, and Q1 [N] denotes the force horizontally accelerating the whole 
system. The local torque on pendulum’s shaft is identical to zero because it is not 
actuated. The actual state of the system defines a constraint between the 2nd time-
derivatives of x and ϕ  according to the lower part of (8). From this constraint the 
2nd derivative of x can be expressed as a function of the 2nd derivative of ϕ . Via 
substituting it into the upper part of (8) the appropriate Q1.necessary for achieving 
this angular acceleration can be calculated. The result is as follows: 
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It is evident that about ϕ =0 d2ϕ /dt2 is decreasing function of Q1. In the 
forthcoming simulations the following primitive model was used:  

1505.01 +×−= ϕ&&Q  (10) 

that is a very rough estimation of such a “negative definite” system. For the 
transformation ζ=-0.8 and D=200 were applied. (It is worth noting that the 
forthcoming task differs from the stabilization of the pendulum in its unstable 
upper position. This special task can be executed with simultaneously stabilizing 
the horizontal position of the cart via various fuzzy controllers. In the here 
considered examples x cannot be controlled at all.) The desired second time-
derivative of the angle of the pendulum was given on purely kinematical basis. 
The cycle time of the control was 1 ms, but the adaptive loop was activated only in 
each 10th ms and used the averaged angular velocities for 10 ms to update the 
adaptive factor. 



According to Fig. 4 the adaptive control considerably improved the tracking of the 
phase trajectories. 

Similar results are obtained for fast desired motion according to Fig. 5. 

To demonstrate the “robustness” of the method the counterpart of Fig. 5 vas 
calculated for ζ=-0.2 and D=150. The results in Fig. 6 in comparison with Fig. 5 
reveal that the method is really robust not only against the variation of the speed 
of the desired pendulum motion, but also against the modification of the adaptive 
parameters. It can be seen, too, that the quality of trajectory and phase trajectory 
tracking was concerned by these parameters but the method remained convergent. 

 

 

 
Figure 4 

Phase trajectories (1st row) [rad/s vs. rad], trajectory tracking (2nd row), and trajectory tracking error (3rd 
row) vs. time [rad vs. s] for the non-adaptive (left column) and the adaptive (right column) control of 

the system for slow motion. 



It is worth noting, too, that according to the expectations the series of the adaptive 
parameter sn in each case converged to 1. 

Conclusions 

In this paper the extension of a Modified Renormalization Transformation based 
method was introduced and investigated via simulations. While the original 
modification was designed for positive definite systems, the extension aims at the 
control of negative definite, Single Input, Single Output (SISO) systems. Such 
systems occur in Classical Mechanics when a multiple Degree Of Freedom (DOF) 
system has only one driven axis and this drive is used to control a different axis 
utilizing the nonlinear dynamic coupling between the axes. As an example the 
inverted pendulum-cart system was considered in which the drive of the cart’s 
translational DOF was used for controlling the rotational axis of the pendulum. 

The example investigated well demonstrates that the method can be properly 
convergent for realistic physical systems. Of course improper convergence can 
also occur but with the variation of the very primitive model parameters and the 
adaptive parameters proper convergence can also be achieved. 

The extension results in a whole family of parametric transformations in which 

 

 
Figure 5 

Phase trajectories [rad/s vs. rad] (upper left), trajectory tracking (upper right), trajectory tracking 
error [rad vs. s] (lower left), and the adaptive parameter vs. time [dimensionless vs. s](lower right) 

for the non-adaptive (left column) and the adaptive (right column) control of the system for fast 
motion.



two parameters, a “multiplicative” and a “shift” parameter are present. It as shown 
via simulations that the fact of the convergence is robust against the variation of 
these parameters and their actual value mainly concerns only the speed of 
convergence. 

Further investigations should aim at the control of negative definite MIMO 
systems. 
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Figure 6 
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for the non-adaptive (left column) and the adaptive (right column) control of the system for fast 
motion and modified control parameters. 
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