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Abstract: The fuzzy logical operators have a very important role in the fuzzy expert systems 
and fuzzy controllers. The premises of a rule in a fuzzy expert system are made of one or 
more logical fuzzy operations. In this paper we will consider the logical fuzzy conjunction 
defined by a t-norm, and we will determine its properties. From this properties the theorem 
of structure for the fuzzy disjunction of n arity, proved that the fuzzy Archimedean operator 

can be generated by a function [ ] [ ]  ,,01,0: ∞→f continuous and strictly decreasing, 

with ( ) 01 =f . Other results from this paper to refer to relation between numbers of AND 
arguments and her logical value. 
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1 Introduction 

In many papers in the domain, as [2], [3], [7], [10], the logical operation of two 
fuzzy sets are defined on [ ] [ ] [ ]1,01,01,0 →× . In this paper we will consider the 
logical fuzzy operator AND (fuzzy conjunction) defined by a t-norm, and we will 
extent this operator to an operator of n arity. 

The fuzzy logical operations of n arity are used in fuzzy systems, fuzzy controllers 
and their properties proved in this paper will help us in tunning the mechanisms of 
fuzzy inference [10], [11], [1]. 

Let Ω be universal space. 

Definition 1: If we have two classical sets of objects Ω⊆YX ,  then the 
membership function of the conjunction of two fuzzy sets A~  in X and B~  in Y is 
given by: 
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where F represents the set of the membership functions and T is a t-norm also 
named the generator of fuzzy conjunction. The extension of function AND to a 
function of n arity is made inductively by the use of associatively: 
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2 The Properties of the Logical Fuzzy Conjunction of 
N Arity 

In 1965 C. H. Ling [5] proved the theorem of structure for continuous and 
Arhimediean t-norms. In [4] J. Fodor and M. Roubens define the AND operator by 
t-norm. We will further prove the theorem of structure for the fuzzy conjunction of 
n arity: 

Theorem 1: If the generator of fuzzy conjunction is continuous and Archimedean 
then there exists a function [ ] [ ]  ,,01,0: ∞→f continuous and strictly decreasing, 
with ( ) 01 =f , so that, 
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where ( )1−f  is pseudoinverse of f defined by ( )( ) ( ) ( )
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Proof: The proof is made by induction. For n=2 we have Ling's theorem of 
structure for t-norm continuous and Archimedean. We assume that 
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We have two cases: 
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Theorem 1 proved that the any fuzzy Archimedean conjunction can be generated 
by a function  f  with the properties from theorem. 
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Proposition 2 it is a generalization of proposition 1 and it proves that if in a fuzzy 
rule the premise made of n arity conjunction has value 1 in a certain point, then all 
the membership functions involved in the premise of that rule will have value 1 in 
that point: 
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Proof: The proof is based on the generalization of proposition 1. 

Theorem 2 proves that the logical value of a fuzzy conjunction of n arity 
decreasing with the number of the involved membership functions. This means 
that the more logical propositions are involved in a fuzzy conjunction, the more its 
logical value will decrease: 
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The proof is obvious using theorem 2. 
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The proof is obvious using theorem 2. 

Corollary 3: 
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From this corollary it immediately results the following: 
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Theorem 3 shows that the larger the number of the positive membership functions 
involved in the fuzzy disjunction, the closer to 1 the value of the disjunction tends 
to be. 

Theorem 3: If the fuzzy logical conjunction has an Archimedean generator and 
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Proof: From [D. Butnariu, E. P. Klement] pag. 24 we have for every constant 
sequence ( ) [ )1,0∈∈INnnx  and for every Archimedean t-norm T: 
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Corollary 7: If the fuzzy logical conjunction has an Archimedean generator, and if 
( ) INnn ∈µ  is a sequence of constant membership functions with 
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Conclusions 

The properties of logical fuzzy disjunction proved in this paper represent an 
important means in developing a fuzzy expert system, fuzzy controllers and in 
determining its properties. 

The fuzzy logical operator AND of n arity can be generalized if 
{ }+→Ω= IRF :µµ  and T is a function defined on +→+×+ IRIRIR . In the 

same way there can also be generalized the other logical operators. On the other 
hand the operator AND can be individualized taking into consideration the class of 
t-norms used: Schweizer&Sklar [1983], Hamacher [1978], Frank [1979], Yager 
[1980], Dubois & Prade [1980] or Dombi [1982] [6] (for a better characterization 
of a t-conorms can be study the paper [8]). Coversely there can be proved the 
properties of fuzzy logical operator OR, further on establishing properties of the 
combinations of the two operators [9]. 

Considering the properties of the logical fuzzy operators of n arity there can be 
developed methods and techniques of tunning the engines of fuzzy inference. 
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