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Abstract: The Youla parameterization (also the Q – parametrization) is a modern control 
design method suitable for both stable and unstable plants. In the design phase systems 
with electrical drives can be well approximated through low order linear models called 
benchmarks. For such system it can be advantageous to use control design based on 
modulus optimum criterion (Modulus Optimum MO-m and Symmetrical Optimum SO-m) or 
methods derived from this one, such as ESO-m and 2E-SO-m. In addition to the original, 
classical SO-m, the 2E-SO-m has the advantage of providing a better phase margin and 
improved robustness. The paper presents briefly the development and tuning solutions of PI 
and PID controllers based on ESO-m and 2E-SO-m meant for electrical drive systems. 
Based on these a Youla parameterization interpretation of the methods is given. 

Keywords: drive systems, servo-system, benchmark models, ESO and 2E-SO method, Youla 
parametrization design. 

1 Introduction 

The Youla parameterization, also called as Q-parameterization, is a design method 
applied for both stable and unstable plants [1]. It differs from classical design 
methods that impose controller types and structures, the Youla parameterization 



requires polynomials relative to the system’s properties. The disadvantage of the 
method consists in fact that in case of high order, non-minimum phase or unstable 
plants the controller results as a nonconventional one, which is often denied by 
practicians. In the paper there is presented a Youla-parameterization interpretation 
of a certain controller design method for stable benchmark type models, and can be 
applied for control of electrical drives. 

The paper is organized as follows. Paragraph 2 presents two extensions of the SO-m, 
section 3 deals with a Youla-parameterization approach of the previously introduced 
methods. Chapter 4 presents possibilities for application of the method and 
conclusions. 

2 Extensions of the Symmetrical Optimum Method 
for Plants with and without Integral Component 

Based on optimality conditions imposed for the amplitude-frequency characteristics 
[2], in papers [3] and [4] Kessler introduced two design methods, the modulus 
optimum method (MO-m) and the symmetrical optimum method (SO-m). The main 
advantages of the methods are: 

- The use of conventional PI and PID controllers; 

- Simple tuning relations for controller parameters, that are very useful in 
practice; 

- Favourable placement of poles (MO-m) or relatively favourable (SO-m), 
implying  very good or pretty good dynamical behaviour. This can be 
anticipated in the design phase (these can be partially corrected by 
adequate reference filters). 

Consequently, these methods are welcome, being interpreted and extended under 
different particular formulations (see for example [4],[5],[6]). 

One of disadvantages of the SO-m consists in a relatively small phase margin of the 
system (φr ≈ 360 ), which leads to an increased sensibility towards parameter 
changes and low robustness. In other situations even the use of pole-zero cancelation 
technique can worsen the system’s behaviour regarding load disturbances. These 
disadvantages can be avoided by using the so called “Extended Symmetrical 
Optimum method” (ESO-m ) [7] and “Extension based on ESO-m”, (2E-SO-m). 
The first method [7] is dedicated to plants with integral components, while the 
second one [8] to plants without integral components. 

The MO-m and SO-m refer mainly to benchmark type models – synthesised in table 
2.1. These models correspond to transfer functions (t.f.) which can be used e.g. for 
electrical driving  systems, speed- and positoning-control. 



Table 2.1 

Plant transfer (t.f.) functions, P(s) 

Speed-control Positioning control 
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Remarks: 1. TΣ characterises the small time constant or the equivalent of small time 
constants; if the plant contains a relatively small dead-time component, this can be 
included into TΣ: 
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2. The parameter kP, constant or variable gain, characterizes well enough many 
control applications with electrical drives (as controlled plants). 

In case of using PI, PID controllers and pole-zero cancellation in controller design, 
one of the methods indicated in table 2.2 is used. 

The closed loop t.f. regarding the reference signal )(sHr , results: 

 MO-m:   2
210

0)(
sasaa

bsH r ++
=      with         00 ab =  (2.5) 

 SO-m(ESO,2E-SO):  3
3

2
210

10)(
sasasaa

sbbsHr +++
+

= ,
1111

00

aborab
ab

≠=
=

 

 (2.6) 

In order to fulfill the design requirements based on modulus optimality conditions, 
between the coefficients of the transfer functions the following relations are imposed  

MO-m: 2
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Table 2.2 

Controller type, t.f. C(s) and design relations  

regarded to the plant t.f. P(s) 

 
The 

method 

PI  (or I)  PID PID2 

 (a) (b) (c ) 

MO-m (2.1-a): I 

(2.2-a): PI 
(2.3-a): PID Fourth order t.f. 

SO-m (2.1-b): PI (2.2-b): PID (2.3-b): PID2 

ESO-m (2.1-b): PI (2.2-b): PI (2.3-b): PID2 

2E-SO-m (2.2-a): PI (2.3-a): PID Fourth order t.f. 

t.f. C(s) 
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Further pole-zero cancelation 

 is used 

SO-m 
ESO-m 

2E-SO-m 

See table 2.3 

Table 2.2 contains the idealized forms for the controllers. In some of the cases these 
forms are physically unrealizable, in this case small time constants are additionally 
introduced in the denominator. 

Starting from the optimality condition (2.7), in [7] and [8] between the t.f. 
coefficients (2.5), (2.6) the following conditions have been imposed: 

2
120 aaa =β     ,   2

231 aaa =β  (2.9) 

where β is a design parameter at the choice of the system designer. For the 
particular case of  β =4 one gets the SO-m tuning relations. 

Table 2.3 synthesizes the main information regarding the two extensions of the 
SO-m, based on papers [7] and [8]. By applying the ESO-m or 2E-SO-m, more 
favourable closed system pole-zero placement, controlled through the β parameter is 
obtained. As a consequence, favourable polynomial forms for T(s) and S(s) are 
obtained (T(s) is the complementary sensitivity function, S(s) is the sensitivity 
function), used in the design phase. For β = 4, 9, 16 simple tuning relations are 



obtained. By increasing the value of β two important effects for the system are 
gained: 

- increase of the system phase margin, 

- favourable modification of the value of })(max{ 00 sS jSM ω= , of system 

robustness, which is an advantage in case of systems with variable 
parameters. 

Table 2.3 
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Here 
1T

T
m Σ= . The β parameterization was introduced in paper [7], and the 

parameterization β  and m in paper [8]. 

3 Youla - parameterization Design based on Results 
of ESO and 2E-SO Methods 

In [9] it is presented that if )(sG  has a bounded rational form, with real 
coefficients, ∞<)( ωjG , there exists a coprime factorization over the set of all 

bounded rational forms having real coefficients: 

)(
)()(

sM
sNsG =    with   ϕ∈)(sG  (3.1-a) 

1)()()()( =+ sYsMsXsN    (Bezout’s identity) (3.1-b) 

where: ϕ∈)(),(),(),( sYsMsXsN  , and  φ – set of all bounded rational forms 
having real coefficients. The all stabilizing controllers of the t.f. (3.1-a) can be 
specified as: 
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)(sQ - a parameteric rational form. If P(s) is stable, the coprime factorization 
(3.1-a) can be particularized as: 
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Consequently, controller (3.2) is calculated with: 
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This can be represented as shown in figure 3.1. Further, the following relations are 
established: 
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Figure 3.1 

Youla-parameterization based control system diagram 
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with the following connection: 

1)()( =+ sTsS ,    )(1)( sSsT −=    )()()( sPsCsL =    the open loop transfer 
function, (3.7) 

The design using Youla parameterization consists in establishing Q(s) so that well 
stated requirements are fulfilled for S(s) or T(s). From relation (3.4) results that C(s) 
depend only on Q(s) and P(s). 

Remark: The design specifications can be also established for behaviour regarding 
the load disturbance d2 , using t.f. Hd2 : 
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The more restrictive these conditions are the more complicated the controller 
structure is. 

Based on this, it results the Youla parameterization design principle. 

If Q(s) is a stable t.f., then the Youla parameterization establishes the controller 
family C(s) that stabilises the P(s) plant. 

As consequence, in controller design the following steps are made: 

Step (1): For the given stable plant P(s), calculus of C(s), having Q(s) as parameter. 
Calculus of S(s) and T(s). 

Step (2): Establishing of a Q(s) through which the imposed performances for S(s) or 



T(s) are ensured. Parametric forms for Q(s) are advantageous. 

Step (3): Establishing the controller C(s) that fulfills the imposed requirements. 

Step (4): Verification of desired performances, sensitivity analysis of the system. 

The use of Youla-parameterization in case of ESO-m and 2E-SO-m is justified by the 
possibility of imposing favourable forms of the expressions of S(s) and T(s) that 
confers the system performances. 

3.1 Youla Parameterization Design based on Results of MO-m 

This case is presented as a first example of Youla parameterization design, 
exemplified only for t.f. (2.2-a), the other cases being solved similarly. 

Step (1): For the given P(s), calculus of C(s), S(s) or T(s) having Q(s) as parameter 
results in form: 
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Step (2): Imposing a favourable T(s) in the specific form for MO-m: 
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Step (3): Establish the controller C(s). Replacing (3.10) into (3.8) results: 
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Remarks: 1. The design requirement can be imposed in other forms as well. For 
example, if only steady-state error is required to be zero then: 
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Substituting this into (3.8), a PID-controller is obtained, with complete pole-zero 
cancellation:  
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A detailed analysis of the system performances reveales that even if the system 
becomes faster, its global properties are not necessarily better. 

2. The controller structure becomes more complicated if the design 
requirement reffers to a very restrictive t.f. Hd2(s). 

3.2 Youla Parameterization Design based on Results of ESO-m  

The plant t.f. is (2.1) … (2.3) (b); the design is exemplified only for t.f. (2.1) (b), 
the second and third case being solved similarly. 

Step (1): For the given P(s) the calculus of C(s), S(s) and T(s) having Q(s) as 
parameter ensures: 
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Step (2): The system performances are imposed through T(s), which is specific for 
ESO-m: 
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Step (3):  Establish the controller C(s); replacing into (3.10) in (3.8) results: 
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where the controller parameters are: 
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3.3 Youla Parameterization Design based on Results of 2E-SO-
m 

The plant t.f. is (2.1) … (2.3) (a); the design steps mentioned at point 3.1 are 
made. The design is exemplified only for t.f. (2.1) (a), the second and third case 



being solved similarly. It must be remarked  that the parameterization introduced 
by relation (2.9) must be imposed already at the stage when T(s) is fixed. 

Step (1): For the given P(s) the calculus of C(s), S(s) and T(s) having Q(s) as 
parameter ensures: 
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Step (2): The expression (3.18) is used: 

( )Σ++= sTsTsT
k

sQ
p

1)1)((1)( 1
   .  (3.19) 

Taking into account the need for a controller C(s) as simple as possible, the system 
performances must be imposed through a T(s) (or S(s) or Hd2(s) ) with specific form. 
For example, in this case, the form of a proportional-derivative-with 3rd order lag 
(PDL3) model. It is the case of 2E-SO-m, where the use of a PI (or PID or PID2) 
controller is imposed. Correspondingly: 

1
1)(

1
2

2
3

3

1

+++
+

=
sasasa

sbsT  (3.20) 

where 

1,
1

,, 01
1

2
1

3 =
+

=
+

== ΣΣ a
kk

Tkk
a

kk
TTa

kk
TTa

cp

ccp

cpcp

   , cTb =1  (3.21) 

Step (3):  Establish a controller C(s) (a PI form for simplicity) which fulfills 
imposed requirements through a desired form of T(s); this form must satisfy 
conditions (2.9). Replacing into (3.19) relation (3.20), results: 
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Replacing (3.22) into (3.17), C(s) results as: 
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If conditions (2.9) are imposed on (3.21), it results: 
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Further on, noting with 1/TTm Σ= , after successive replacements one gets 
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Further replacements lead to the controller parameters: 
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and the expressions of T(s) and S(s) according to 2E-SO-m are obtained: 

1

)1(
)(

'22'2/333'2/3 +++

+
=

ΣΣΣ

Σ

sTsTsT

sT
sT m

βββ

β  , ( )
1

)1(1)1(1)(
'22'2/333'2/3

1

+++

+++
=

ΣΣΣ

ΣΣ

sTsTsT

sTsTsT
k

sQ m

p βββ

β  

 (3.27) 

For the second and third case only a previously performed pole-zero cancellation 
yields to the same result. 

So, for on Youla parameterization based design, the following choice can be made: 

- Place the zero 
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- The poles of the characteristic equation 
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can be chosen as function of {β, TΣ , m}. 
In this context the poles’ placement given by (3.28) leads to a Q(s) of form (3.27), 
and finally in step (3), the controller’s t.f. can be expressed: 
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3.4 Final Remarks 

The main task in case of controller design based on the Youla-parameterization 
consists in fixing some rational conditions through t.f. T(s), S(s) or Hd2(s). This 
choice influences the form of Q(s) and of controller t.f. C(s). If these forms are 
unproperly chosen – too simple or too restrictive – the controller that stabilizes the 
class of plants P(s) becomes too complicated, often unsuitable for handling the 
control task. A quasi-continuously (QC) operating implementation of the control 



solution can be easily performed. In this case as well the presence of integral 
component can lead to a need for the Anti-Windup Reset (AWR) measure. 
Conclusions 

In the paper an interpretation of the Youla-parameterization design is presented, for 
controller design for two special cases of electrical driving systems characterized by 
benchmark type stable models P(s). 

As a difference from classical design methods which impose certain controller types 
and structures, in the Youla-parameterization based design there are certain 
polynomials relatively to the t.f. imposed which caracterize the properties of the 
system. 

The paper presents in detail the way of transposing the positive results gained from 
classical design methods based on modulus conditions (MO-m, SO-m) or conditions 
derived from these (ESO-m si 2E-SO-m) into a Youla-parameterization formulation. 
If the imposed conditions are adequately chosen, the controller is easy to implement. 
If the conditions are inadequate then the controller structure results as more difficult 
to comprehend, such solutions are less accepted in the practice by engineers. 

In case of non-minimum phase systems or unstable systems, the inconvenience of 
the method consists in the fact that the resulting controller is complicated. For these 
plants the design can only be solved by the general formulation of the coprime 
factorization. 
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