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Abstract: The work is concerned with the integrated dynamic control of humanoid
locomotion mechanisms based on the spatial dynamic model of humanoid mechanism.
The control scheme was synthesized using the centralized model with proposed structure
of dynamic controller that involves two feedback loops: position-velocity feedback of the
robotic mechanism joints and reinforcement learning feedback around Zero-Moment
Point. The proposed reinforcement learning is based on modified version GARIC ar-
chitecture for dynamic reactive compensation. Simulation experiments were carried
out in order to validate the proposed control approach.
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1 Introduction

Having in mind very high requirements to be satisfied by humanoid robots it
should be pointed out the need to increase the number of degrees of freedom
(DOFs) of their mechanical configuration, to study in more depth some previ-
ously unconsidered phenomenons in the stage of forming the corresponding dy-
namic models of humanoids, as well as the need to make appropriate controller
software that would be capable of meeting the most complex requirements of
stable trajectory tracking and maintaining dynamic balance of both the regular
(stationary) gait in the presence of small perturbations and of the robot pos-
ture in the case of large perturbations. It should be also pointed out that the
problem of motion of humanoid robots is a very complex control task, especially
when the real environment (scene) is taken into account, which, as minimum,
requires its integration with the robot’s dynamic model.



In this paper, a novel, integrated dynamic control structure for the humanoid
robots is proposed, using the overall model of robot mechanism. The first
control algorithm represents some kind of computed torque control method as
basic dynamic control method, while the second part of algorithm is modified
GARIC reinforcement learning architecture for dynamic compensation of ZMP
( Zero-Moment-Point) error.

Recently, reinforcement learning has attracted attention as a learning method
for studying movement planning and control [3], [4],[5]. Reinforcement learning
concept that is based on trial and error methodology and constant evaluation of
performance in constant interaction with environment. Reinforcement learning
typically requires an unambiguous representation of states and actions and the
existence of a scalar reward function.

The goal of this paper is to propose the usage of reinforcement learning for
humanoid robotics. Initially, there are several approaches [7],[6], [8], [9] with
additional demands and requirements because high dimensionality of the control
problem. Furthermore, Benbrahim and Franklin showed the potential of these
methods to scale into the domain of humanoid robotics [6].

The basic reinforcement learning method is based on the Actor-Critic ar-
chitecture. Actor-Critic methods are the natural extension of the idea of rein-
forcement comparison methods to Temporal Difference (TD) learning [5]. The
Actor network can be thought of as the control agent, because it implements a
policy. The Actor network is part of the dynamic system as it interacts directly
with the system by providing control signals for the plant. The Critic network
implements the reinforcement learning part of the control system as it provides
policy evaluation and can be used to perform policy improvement. This learn-
ing agent architecture has the advantage of implementing both a reinforcement
learning mechanism as well as a control mechanism. For the Actor, we selected
the two-layer, feedforward neural network with sigmoid hidden units and linear
output units. For the Critic, neuro-fuzzy network is proposed. The critic is
trained to produce the expected sum of future reinforcement that will be ob-
served given the current values of deviation of dynamic reactions and action.
The Actor network receives the position and velocity tracking error from the
biped system . It is trained via Back propagation (gradient descent) algorithm
and training example provided by Critic net. The implemented algorithm was
base on modified version of GARIC approach presented in paper [10]. In this pa-
per, the external reinforcement signal was simply defined to be measure of ZMP
error. Internal reinforcement signal is generated using external reinforcement
signal and appropriate policy,

2 Model of the system

2.1 Model of the robot’s mechanism

Biped locomotion mechanisms represent generally branched kinematic chains
interconnected with spherical or cylindrical joints [1]. During the motion, some



kinematic chains in their interaction with the environment transform from open
to closed type of chain [2]. In Fig. 1 is shown the kinematic scheme of the
biped locomotion mechanism [2] whose spatial model will be considered in this
work. The model will be used to synthesize dynamic control of the locomotion
mechanism and to verify the research results obtained in simulation experiments.
The mechanism possesses 18 powered DOFs, designated by the numbers 1-
18, and two unpowered DOF's (1’ and 2’) for the footpad rotation about the
axes passing through the instantaneous ZMP position. Thus, the considered
mechanism has in total n=20 DOF's of motion.

The mechanism dynamic model presented in Fig. 1 has been formed using
the relations known from Newton’s rigid body dynamics. There are several ap-
proaches to forming the model of locomotion mechanisms, depending on which
of the kinematic chain links is taken as the ‘basic’ one. In this paper, the mech-
anism model is defined solely in the state space of robotic internal coordinates
[2]. For this purpose, the first link in the branched chain, representing the
supporting foot, is adopted as the basic link of the mechanism.

Bearing in mind the selected basic link of the mechanism, recursive numerical
relations are formed [1] that successively determine angular and translational
velocities and accelerations of particular links of the robotic mechanism. Taking
into account the dynamic coupling between particular parts (branches) of the
mechanism chain one can derive the relation that describes the overall dynamic
model of the locomotion mechanism in a vector form [2]:

P = H(q) + h(q,q) (1)

where: P € R"*! is the vector of driving moments at the humanoid robot joints;
F € R5%! is the vector of external forces and moments acting at the particular
points of the mechanism; H € R™*" is the square matrix that describes ‘full’
inertia matrix of the mechanism shown in Fig. 1; h € R™! is the vector of
gravitational, centrifugal and Coriolis moments acting at n mechanism joints;
n = 20 is the total number of DOFs (Fig. 1). Of special importance in the
calculation of the model (1) is the force F', which represents the vector of forces
and moments of ground reaction at the moment of contact of the foot of free
(unconstrained) leg and ground surface, i.e. at the moment when the weight is
transferred from one foot to the other. The pertinent terminology distingushes
between the so-called supporting or constrained foot and unconstrained foot,
which in the moment of contact with the ground is transformed into the con-
strained one. In this paper, our primary concern to consider the contact of rigid
foot with ground and walking on slightly horizontal plane.

2.2 Definition of control criteria

In the synthesis of control for biped mechanism gait it is necessary to satisfy
certain natural principles. The control ought to satisfy the following criteria: (i)
accuracy of tracking the desired trajectories at the mechanism joints (ii) main-
taining dynamic balance of the mechanism during the motion, (iii) minimization
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Figure 1: Model of the humanoid locomotion mechanism with 18 active and 2
passive DOFs: (a) kinematic scheme of the mechanism, (b) dynamic model of
the environment

of the impact arising at the moment of contact of the free foot and the ground
during the gait, (iv) minimization of dynamic loads at the robot joints, and (v)
realization of anthropomorphic characteristics of the gait.

Fulfillment of criterion (i) enables realization of the desired mode of motion,
walk repeatability and avoiding of potential obstacles in the way. To satisfy
criterion (ii) it means to have a stable balanced walk. Fulfillment of criterion
(iii) ensures a higher degree of stability of the overall system in respect of the
impact appearing at the moment when the unconstrained leg foot strikes the
ground. Fulfillment of criterion (iv) is needed for the purpose of minimizing
dynamic loads at the robotic joints, which is especially important for the joints
bearing the highest load during the walk, e.g. the hip. Criterion (v) is related
to the quality of walk realization.



2.3 Gait phases and indicator of dynamic balance

The robot’s bipedal gait consists of several phases that are periodically repeated
[2]. At that, depending on whether the system is supported on one or two legs,
two macro-phases can be distinguished: (i) single-support phase (SSP) and (ii)
double-support phase (DSP). Double-support phase has two micro-phases: (i)
weight acceptance phase (WAP) or heel strike, and (ii) weight support phase
(WSP). Fig. 2 illustrates these gait phases of biped robot locomotion, with
the projections of the contours of the right (RF) and left (LF) robot foot on
the ground surface, whereby the shaded areas represent the zones of the direct
contact with the support. While walking, the biped is constantly in the state
of a certain dynamic balance. The indicator of the degree of dynamic balance
is the ZMP, i.e. its relative position with respect to the footprint of the sup-
porting foot of the locomotion mechanism. The ZMP is defined [1],[2] as the
specific point under the robotic mechanism foot at which the effect of all the
forces acting on the mechanism chain can be replaced by a unique force, and
at which all the rotation moments about the z and y axes are equal to zero.
Instantaneous position of the ZMP is the best indicator of the dynamic bal-
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Figure 2: Phases of biped gai

ance of the biped robot. The ZMP position inside these stability areas ensures
dynamically balanced gait of the mechanism [1], whereas its position outside
these zones indicates the state of instability of the overall mechanism and the
possibility of its overturning,. The quality of controling the robot balance can
be measured by the success in tracking the ZMP trajectory within the support
polygon of the mechanism. The ZMP position is determined by the calcula-
tion based on measuring reaction forces under the robot foot. Force sensors are



usually placed on the foot sole.

3 Dynamic Integrated Control algorithm

In accordance with the control task, we propose the application of the algo-
rithm of the so-called integrated dynamic control, based on the knowing of the
overall dynamic model of the system. At that, it is assumed that the following
assumptions hold: (i) the model (1) describes sufficiently well the behavior of
the system presented in Fig. 1; (ii) Desired (nominal) trajectory of the mech-
anism performing a dynamically balanced gait is known during motion. It is
determined off-line (by some of the known mathematical methods) or calculated
in real time on some of higher robot control levels; (iii) Geometric and dynamic
parameters of the mechanism are known and constant.

Based on the above assumptions, in Fig. 3 is presented the block-diagram of
the dynamic controller for biped locomotion mechanism, proposed in this work.
It involves two feedback loops: (i) position-velocity feedback, (ii) dynamic re-
action feedback at the ZMP based on GARIC reinforcement learning structure,
The synthesized dynamic controller (Fig. 3) was designed on the basis of the
centralized dynamic model. The vector of driving moments P represents the sum
of the driving moments ]51 and }52. The moments }51 are determined so to en-
sure precise tracking of the robot’s position and velocity in the space of joints
coordinates. The driving moments P, are calculated with the aim of correcting
the current ZMP position with respect to its nominal.

3.1 Controller of trajectory tracking

The controller of tracking nominal trajectory of the locomotion mechanism has
to ensure the realization of a desired motion of the humanoid robot and avoiding
fixed obstacles on its way. In [2], it has been demonstrated how local PD or
PID controllers of biped locomotion robots are being designed. In this work, the
controller for robotic trajectory tracking was synthesized using the computing
torque method in the space of internal coordinates of the mechanism joints. For
this purpose use was made of the robot dynamic model defined by the relation
(1). The control law can be expressed in the known form:

P = H(q)ldo + Ko(d — do) + Kp(q — q0)] + (g, q) (2)

where H,h are the corresponding estimated values of the inertia matrix, vector
of gravitational, centrifugal and Coriolis forces and moments from the model
(1). The matrices K, € R™*™ and K, € R™*™ are the corresponding matrices
of position and velocity gains of the controller. The gain matrices K, and
K, can be chosen in the diagonal form by which the system is decoupled into
nindependent subsystems.
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Figure 3: Block-scheme of the integrated dynamic control of biped with two
feedback loops

3.2 GARIC Compensator of dynamic reactions

In the sense of mechanics, locomotion mechanism represents an inverted multi
link pendulum. In the presence of elasticity in the system and external environ-
ment factors, the mechanism’s motion causes dynamic reactions at the robot
supporting foot. Thus, the state of dynamic balance of the locomotion mecha-
nism changes accordingly. For this reason it is essential to introduce dynamic
reaction feedback at ZMP in the control synthesis. There are relationship be-
tween the deviations of ZMP positions (Az(*™?) Ay(*mP)) from its nominal
position 0,, in the motion directions z and y and the corresponding dynamic
reactions Mézmp ) and M@Sm” ) acting about the mutually orthogonal axes that
pass through the point 0,,p. Mézmp) € R™! and M?Szmp) € RY™! represent
the moments that tend to overturn the robotic mechanism, i.e. to produce its
rotation about the mentioned rotation axes (axes of the joints 1’ and 2’ in Fig.
1). On the basis of the above the reinforcement control algorithm is defined
with respect to the dynamic reaction of the support at ZMP. In this case exter-
nal reinforcement signal R is defined according to values of ZMP error. If ZMP
error is greater then chosen limit, external reinforcement signal is set to value
1. Hence, AEN network (action evaluation network) maps position and veloc-
ity tracking errors and external reinforcement signal R in scalar value (internal
reinforcement R) which represent the quality of given control task defined by



the following policy:

R(t+1)=R(t)+~yv(t+1) —v(t) (3)

where v(t) is output of AEN; v is a coefficient between 0 and 1. ASN (action
selection network) maps the deviation of dynamic reactions in recommended
control torque. Exactly, by using SAM(Stochastic action modifier), based on
recommended control torque and internal reinforcement R, control torque Py,
is generated. Learning process of AEN (tuning of network weighting factors)
is realized by modified version of back propagation algorithm where error is
defined by internal reinforcement signal R. In the same way, using gradient
method and internal reinforcement signal, learning proces of ASN is realized.
AM©GmP) ¢ R2X1 is the vector of deviation of the actual dynamic reactions
from their nominal values. Pj. € R?*! is the vector of control moments at
the joints 1’ and 2’ (Fig. 1) that ensures the state of dynamic balance. The
control moments Py, calculated from GARIC reinforcement learning structure
can not be generated at the joints 1’ and 2’ because these are underactuated,
i.e. passive joints. Because of that the control action is ‘displaced’ to the other,
powered joints of the mechanism chain. Since the vector of deviation of dynamic
reactions AM *™P) has two components about the mutually orthogonal axes
and y, at least two different active joints have to be used to compensate for these
dynamic reactions. Considering the model of locomotion mechanism presented
in Fig. 1, the compensation was carried out using the following mechanism
joints: 1, 6 and 1j to compensate for the dynamic reactions about the z-axis
and 2, 4 and 18 to compensate for the moments about the y-axis. Thus, the
ankle joints, hip joints and. waist joints are taken into consideration. Complete
control P (Fig. 4), is calculated on the basis of the vector of the moments Py,
(after distribution it is P, calculated using the GARIC structure , whereby it is
borne in mind how many ‘compensational joints’ are really engaged. In the case
when compensation of the ground dynamic reactions is performed using all six
proposed joints the compensation moments Pg,. are uniformly distributed over
all of the selected joints, to load uniformly the . In nature, biological systems use
simultaneously a large number of joints for correcting their balance. However,
for the purpose of verifying the control algorithm, in this work the choice was
restricted only to the mentioned six joints: 1, 2, 4, 6, 13 and 14 (Fig. 1).

4 Simulation experiments

Theoretical results presented previously were analyzed on the basis of numerical
data obtained by simulation of the closed-loop model of the locomotion mech-
anism shown in Fig. 1. Total mass of the mechanism was m = 70 [kg] and
its geometric and dynamic parameters were taken from (Vukobratovié, 1990).
Simulation examples are concerned with the characteristic pattern of artificial
gait in which the mechanism makes a half-step of the length I = 0.40 [m]in the
time period of ¢ = 0.75 [s]. Nominal trajectories at robot joints are synthesized
for the gait in the horizontal plane. The simulation results were analyzed on the



time interval corresponding to the duration of one half-step of the locomotion
mechanism in the swing phase (Fig. 2). In the analysis of the efficiency of the
developed dynamic controller (Fig. 3) in realizing dynamically balanced motion
the most delicate is the single-support phase (swing phase), as well as the mo-
ment when the so-called free foot touches/strikes the ground. For this reason
of special importance for control is the analysis of dynamic robot behavior in
these time intervals, so that the simulation examples were selected to encom-
pass these critical phases. In the first simulation example the assigned initial
deviations of particular angles at mechanism joints did not exceed Ag; < 10°
Constant inclinations of the ground surface in the sagittal plane v; = 3° and
frontal plane v = 2° were introduced as an additional disturbance. Thus the
simulation dealt with the real case of walking on a quasi-horizontal support. Of
concern was the robot’s behavior in the swing phase (Fig. 2) when the robot
by its rigid foot relies on the ground while the other (free) foot is above the
ground surface. At that, two cases of control were analyzed: (i) applying only
the controller of tracking the given trajectory with position-velocity feedback
(Fig. 3) and (ii) applying the combined control with the controller of trajectory
tracking and compensator of dynamic reactions of the ground around the ZMP.
In the case (ii) use was made of the control structure called ‘Basic dynamic
controller’ (see Fig. 3). In Figs. 4,5, and 6 are presented the results of applying
the controller in the case (ii). On analyzing the results presented in Figs. 4 and
5 one can see that the we have better results for error of ZMP when algorithm
with training of ASN neuro-fuzzy network is used. It can be concluded that
without the feedback with respect to the ground reactions around the ZMP it is
not generally possible to ensure dynamic balance of the locomotion mechanism
in its motion. This comes out from the fact that the nominal trajectory was
synthesized without taking into account the possible deviations of the surface
on which biped walks from an ideally horizontal plane. Therefore, the ground
surface inclination influences the system’s balance as an external stochastic dis-
turbance.

In Fig. 6 are presented the corresponding deviations (errors) Ag; of the
real values of angles at the robot joints from their nominal values when the
controller of tracking desired trajectory was applied. The deviations of the
variables converge to a zero value on the given time interval, which means that
the controller employed ensured good tracking of the desired trajectory.

In Fig. 7 value of internal reinforcment throyh proces of walkkinh is pre-
sented. It is clear that task of walking within desired ZMP tracking error limits
is achieved.

Conclusions

The control scheme of an integrated dynamic controller of locomotion mecha-
nism was synthesized. Control level consists of the so-callled ‘basic dynamic con-
troller’ was synthesized, consisting of a dynamic controller for tracking robot’s
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nominal trajectory and a compensator of dynamic reactions of the ground
around the ZMP based on GARIC reinforcement learning architecture. At that,
feedback loops were formed with respect to position and velocity of the mecha-
nism joints, as well as with respect to dynamic ground reactions. Basic dynamic
controller was designed with the aim of ensuring precise tracking of the given
motion and maintaining dynamic balance of the humanoid mechanism. The
proposed control scheme fulfills the preset control criteria.
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